Skip to main content
Log in

Lattice population dynamics for plants with dispersing seeds and Vegetative propagation

  • Original Paper
  • Published:
Researches on Population Ecology

Abstract

The population dynamics of plants in a lattice structured habitat are studied theoretically. Plants are assumed to propagate both by producing seeds that scatter over the population and by vegetative reproduction by extending runners, rhizomes, or roots, to neighboring vacant sites. In addtion, the seed production rate may be dependent on the local density in the neighborhood, indicating beneficial or harmful crowding effects. Two sets of population dynamical equation(s) are derived: one based onmean-field approximation and the other based onpair approximation (tracing both global and local densities simultaneously). We examine the accuracy of these approximate dynamics by comparing them with direct computer simulation of the stochastic lattice model. Pair approximation is much more accurate than mean-field approximation. Mean-field approximation overestimates the parameter range for persistence if crowding effects on seed production are harmful or weakly beneficial, but underestimates it if crowding effects are highly beneficial. Dynamics may show bistability (both population persistence and extinction) if the effect of crowding is strongly beneficial. If there is a linear trade-off between seed production and vegetative reproduction, the equilibrium abundance of the population may be maximised by a mixture of seed production and vegetative reproduction, rather than by pure seed production or by pure vegetative reproduction. This result is correctly predicted by pair approximation but not by mean-field approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begon, M., J. L. Harper and C. R. Townsend (1990)Ecology: individuals, populations and communities. 2nd ed. Blackwell, Oxford.

    Google Scholar 

  • Bell, A. D. (1984) Dynamic morphology: A contribution to plant population ecology. pp. 48–65.In R. Dizro and J. Sarukhán (eds.)Perspectives on plant population ecology. Sinauer, Sunderland.

    Google Scholar 

  • Bezuidenhout, C. and G. Grimmet (1990) The critical contact process dies out.The Annals of Prob. 18: 1462–1482.

    Google Scholar 

  • Brower, R. C., M. A. Furman and M. Moshe (1978) Critical exponents for the Reggeon quantum spin model.Phys. Lett. 76B: 213–219.

    CAS  Google Scholar 

  • Callaghan, T. V. (1988) Physiological and demographic implications of modular construction in cold environments. pp. 111–136.In A. D. Davy, M. J. Hutchings and A. R. Watkinson (eds.)Plant population ecology, Blackwell, Oxford.

    Google Scholar 

  • Callaghan, T. V., A. D. Headley and J. A. Lee (1991) Root function related to the morphology, life history and ecology of tundra plants. pp. 311–340.In D. Atkinson (ed.)Plant root growth: an ecological perspective. Blackwell, Oxford.

    Google Scholar 

  • Caswell, H. (1989)Matrix population models: construction, analysis, and interpretation. Sinauer, Sunderland.

    Google Scholar 

  • Caswell, H. and R. J. Etter (1992) Ecological interactions in patchy environments: from patch-occupancy models to cellular automata. pp. 93–109.In S. A. Levin, T. M. Powell and J. H. Steele (eds.)Patch dynamics Springer, New York.

    Google Scholar 

  • Colsanti, R. L. and J. P. Grime. (1993) Resource dynamics and vegetation processes: a deterministic model using two-dimensional cellular automata.Funct. Ecol. 7: 169–176.

    Article  Google Scholar 

  • Cook, R. E. (1979) Asexual reproduction: a further consideration.Amer. Nat. 113: 769–772.

    Article  Google Scholar 

  • Cook, R. E. (1983) Clonal plant populations.Amer. Sci. 71: 244–253.

    Google Scholar 

  • Crawley, M. J. and R. M. May (1987) Population dynamics and plant community structure: competition between annuals and perennials.J. Theor. Biol 125: 475–489.

    Article  Google Scholar 

  • De Roos, A. M., E. McCauley, and W. G. Wilson (1991) Mobility versus density-limited predator-prey dynamics of different spatial scales.Proc. R. Soc. Lond. B 246: 117–122.

    Google Scholar 

  • Douglas, D. A. (1981) The balance between vegetative and sexual reporduction onMimulus primuloides (Scrophulariaceae) at different altitudes in California.J. Ecol. 69: 295–310.

    Article  Google Scholar 

  • Durrett, R. (1992) Stochastic growth models: bounds on critical values.J. Appl. Prob. 29: 11–20.

    Article  Google Scholar 

  • Durrett, R. and S. Levin (1992) Stochastic spatial models: a user's guide to ecological application.Technical Rep. Cornell University pp. 92–64

  • Etter, R. J. and H. Caswell (1994) The advantages of dispersal in a patch environment: effects of disturbance in a cellular automata model.In K. J. Eckelbarger and C. M. Yound (eds.)Reporduction, larval biology and recruitment in the deep-sea benthos. Columbia University Press, New York. (in press)

    Google Scholar 

  • Fitter, A. (1986) Acquisition and utilization of resources. pp. 375–405.In M. J. Crawley (ed.)Plant ecology. Backwell, Oxford.

    Google Scholar 

  • Grime, J. P., J. G. Hodgson and R. Hunt (1989)Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London.

    Google Scholar 

  • Harada, Y., H. Ezoe, Y., Iwasa, H. Matsuda and K. Satō. Population Persistence and Spatially Limited Social Interaction.Theor. Popul. Biol. (in press)

  • Hassell, M. P., H. N. Comins, and R. M. May (1991) Spatial structure and chaos in insect population dynamics.Nature 353: 255–258.

    Article  Google Scholar 

  • Harper, J. L. (1982)Population biology of plants. Academic Press, London.

    Google Scholar 

  • Hartnett, D. C. (1990) Size-dependent allocation to sexual and vegetative reproduction in four clonal composities.Oecologia 84: 254–259.

    Google Scholar 

  • Hassell, M. P. (1978)The dynamics of arthoropod predator-prey systems. Princeton University Press, Princeton.

    Google Scholar 

  • Hassell, M. P. and R. M. May. (1974) Aggregation in predators and insect parasites and its effect on stabilitity.J. Anim. Ecol. 43: 567–594.

    Article  Google Scholar 

  • Howe, H. F. and L. C. Westley (1986) Ecology of Pollination and Seed Dispersal. pp. 185–215.In M. J. Crawley (ed.)Plant ecology. Blackwell, Oxford.

    Google Scholar 

  • Hutchings, M. J. and A. J. Slade (1988) Morphological plasticity, foraging and integration in clonal herbs. pp. 83–109.In A. J. Davy, M. J. Hutchings and A. R. Watkinson (eds.)Plant population ecology. Blackwell, Oxford.

    Google Scholar 

  • Ives, A. R. and R. M. May (1985) Competition within and between species in a patchy environment.J. Theor. Biol. 115: 65–92.

    Article  Google Scholar 

  • Iwao, S. (1968) A new regression method for analyzing the aggregation pattern of animal populations.Res. Poput. Ecol. 10: 1–20.

    Google Scholar 

  • Iwao, S. and E. Kuno (1971) An approach to the analysis of aggregation pattern in biological populations. pp. 461–513.In G. Patil (ed.)Statistical ecology, vol. I. Penn. State Univ. Press, Philadelphia.

    Google Scholar 

  • Iwasa, Y. and E. Teramoto (1977) A mathematical model for the formation of a distribution pattern and an index of aggregation.Jap. J. Ecol. 27: 117–124.

    Google Scholar 

  • Iwasa, Y. and E. Teramoto (1984) Branching-diffusion model for the formation of distributional patterns in populations.J. Math. Biol. 19: 109–124.

    Article  Google Scholar 

  • Iwasa, Y., K. Sato and S. Nakashima (1991) Dynamic modeling of wave regeneration (Shimagare) in subalpineAbies forests.J. Theor. Biol. 152: 143–158.

    Google Scholar 

  • Kakehashi, M., Y. Suzuki, and Y. Iwasa (1984) Niche overlap of parasitoids in host-parasitoid systems: its consequence to single vs. multiple introduction controvesy in biological control.J. Appl. Ecol. 21: 115–131.

    Article  Google Scholar 

  • Katori, M. and N. Konno (1990) Correlation inequalities and lower bounds for the critical value λc of contact processes.J. Phys. Soc. Japan 59: 877–887.

    Article  Google Scholar 

  • Katori, M. and N. Konno (1991) Upper bounds for survival probability of the contact process.J. Stat. Phys. 63: 115–130.

    Article  Google Scholar 

  • Kawano, K. and Y. Iwasa (1993) A lattice structured model for beech forest dynamics: the effect of understory dwarf bamboo.Ecol. Model. 66: 261–275.

    Article  Google Scholar 

  • Kawano, S. and J. Matsuda (1980) The productive and reproductive biology of flowering plants. VII. Resource allocation and reproductive capacity in wild populations ofHeloniopsis orientalis (Thumb.) C. Tanaka (Liliaceae).Oecologia 45: 307–317.

    Article  Google Scholar 

  • Kawano, S., T. Takada, S. Nakayama and A. Hiratsuka (1987) Demographic differentiation and life-history evolution in temperate woodland plants. pp. 153–181.In K. M. Urbanska (ed.)Differentiation patterns in higher plants. Academic Press, New York.

    Google Scholar 

  • Kuno, E. (1968) Studies on the population dynamics of rice leafhoppers in a paddy field.Bull. Kyushu Agric. Expt. Sta. 14: 137–246. (in Japanese with English summary)

    Google Scholar 

  • Liggett, T. (1985)Interacting particle systems. Sporinger, New York.

    Google Scholar 

  • Lloyd, M. (1967) Mean crowding.J. Anim. Ecol. 36: 1–30.

    Article  Google Scholar 

  • Lovett Doust, L. and J. Lovett Doust (1982) The battle strategies of plants.New Scientist 95: 81–84.

    Google Scholar 

  • Matsuda, H. (1987) Conditions for evolution of altruism. pp. 67–80.In Y. Itô, J. L. Brown and J. Kikkawa (eds.)Animal societies: theories and facts. Japan Scientific Society Press, Tokyo

    Google Scholar 

  • Matsuda, H., N. Ogita, A. Sasaki, and K. Sato (1992) Statistical mechanics of population—The lattice Lotka-Volterra model.Prog. Theor. Phys. 88: 1035–1049.

    Article  Google Scholar 

  • Mollison, D. and K. Kuulasmaa (1985) Spatial epidemic models: theory and simulations. pp. 291–309.In P. J. Bacon (ed.)Population dynamics of rabies in wildlife. Academic Press, London.

    Google Scholar 

  • Morisita, M. (1959) Measureing the disperation of individuals and analysis of the distributional patterns.Mem. Fac. Sci. Kyushu Univ. Ser. E. (Biol.) 2: 215–235.

    Google Scholar 

  • Murray, D. R. (ed.) (1986)Seed dispersal. Academic Press, Syndney.

    Google Scholar 

  • Nakashizuka, T. (1991) Population dynamics of coniferous and broad-leaved trees in a Japanese temperate mixed forest.J. Vegeta. Sci. 2: 413–418.

    Article  Google Scholar 

  • Nishitani, S. and M. Kimura (1993) Resource allocation to sexual and vegetative reproduction in a forest herbsyneilesis palmata (Compositae).Ecol. Res. 8: 173–183.

    Article  Google Scholar 

  • Nowak, A. M. and R. M. May (1992) Evolutionary games and spatial chaos.Nature 359: 826–829.

    Article  Google Scholar 

  • Ohtsuki, T. and T. Keyes (1986) Kinetic growth percolation: Epidemic processes with immigration.Phys. Rev. A33: 1223–1232.

    Article  PubMed  Google Scholar 

  • Pacala, S. W. and J. A. Silander Jr. (1985) Neighborhood models of plant population dynamics. I. Single-species models of annuals.Amer. Nat. 125: 385–411.

    Article  Google Scholar 

  • Raven, P. H., R. F. Evert and H. Curtis (1981)Biology of plants, 3rd ed. Worth, New York.

    Google Scholar 

  • Sato, K. and T. Iwasa (1993) Modeling of wave regeneration in subalpine Abies forests: population dynamics with spatial structure.Ecology 74: 1538–1550.

    Article  Google Scholar 

  • Sato, K., H. Matsuda and A. Sasaki (1994) Pathogen invasion and host extinction in lattice structured populations.J. Math. Biol. 32: 251–268.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. M. and D. L. Urban (1988) Scale and resolution of forest structural pattern.Vegetatio 74: 143–150.

    Article  Google Scholar 

  • Silvertown, J. W. (1987)Introduction to plant population ecology. 2nd ed. Longman London.

    Google Scholar 

  • Tainaka, K. (1988) Lattice model for the Lotka-Volterra system.J. Phys. Soc. Japan 57: 2588–2590.

    Article  Google Scholar 

  • Taylor, L. R. (1984) Assessing and interpreting the spatial distributions of insect populations.Annu. Rev. Entomol. 29: 321–357.

    Article  Google Scholar 

  • Urbanska, K. M. (1990) Biology of asexually reproducing plants. pp. 273–292.In S. Kawano (ed.)Biological approaches and evolutionary trends in plants. Academic Press, London.

    Google Scholar 

  • Wilson, W. G., A. M. De Roos and E. McCauley (1993) Spatial instabilites within the diffusive Lotka-Volterra system: individualbased simulation results.Theor. Popul. Biol. 43: 91–127.

    Article  Google Scholar 

  • Wilsonk, D. S., G. B. Pollock and L. A. Dugatkin (1992) Can altruism evolve in purely viscous populations?Evol. Ecol. 6: 331–341

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, Y., Iwasa, Y. Lattice population dynamics for plants with dispersing seeds and Vegetative propagation. Res Popul Ecol 36, 237–249 (1994). https://doi.org/10.1007/BF02514940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02514940

Key words

Navigation