Skip to main content

Advertisement

Log in

Production of 177Lu for Targeted Radionuclide Therapy: Available Options

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background: This review provides a comprehensive summary of the production of 177Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of 177Lu having the required quality for preparation of a variety of 177Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of 177Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. Methods: While both “direct” and “indirect” reactor production routes offer the possibility for sustainable 177Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. Results: This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. Conclusion: A broad understanding and discussion of the issues associated with 177Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of 177Lu-labeled radiopharmaceuticals, but also help future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for combined imaging and therapy. Chem Rev. 2013;113:858–83.

    Article  CAS  PubMed  Google Scholar 

  2. Dash A, Knapp Jr FF, Pillai MRA. Targeted radionuclide therapy—an overview. Curr Radiopharm. 2013;6:152–80.

    Article  CAS  PubMed  Google Scholar 

  3. Ramogida CF, Orvig C. Tumour targeting with radiometals for diagnosis and therapy. Chem Commun (Camb). 2013;49:4720–39.

    Article  CAS  Google Scholar 

  4. Volkert WA, Goeckeler WF, Ehrhardt GJ, Ketring AR. Therapeutic radionuclides: production and decay property considerations. J Nucl Med. 1991;32:174–85.

    CAS  PubMed  Google Scholar 

  5. Ercan MT, Caglar M. Therapeutic radiopharmaceuticals. Curr Pharm Des. 2000;6:1085–121.

    Article  CAS  PubMed  Google Scholar 

  6. Guo H, Miao Y. Melanoma targeting property of a Lu-177-labeled lactam bridge-cyclized alpha-MSH peptide. Bioorg Med Chem Lett. 2013;23:2319–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yousefnia H, Jalilian AR, Zolghadri S, Bahrami-Samani A, Shirvani-Arani S, Ghannadi-Maragheh M. Preparation and quality control of 177Lu-[tris(1,10-phenanthroline) lutetium(III)] complex for therapy. Nucl Med Rev Cent Eas Eur. 2010;13:49–54.

    Google Scholar 

  8. Bakker WH, Breeman WA, Kwekkeboom DJ, De Jong LC, Krenning EP. Practical aspects of peptide receptor radionuclide therapy with [177Lu][DOTA0, Tyr3]octreotate. Q J Nucl Med Mol Imaging. 2006;50:265–71.

    CAS  PubMed  Google Scholar 

  9. Knapp Jr FF, Mirzadeh S, Beets AL, Du M. Production of therapeutic radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for applications in nuclear medicine, oncology and interventional cardiology. J Radioanal Nucl Chem. 2005;263:503–9.

    Article  CAS  Google Scholar 

  10. Firestone R. Table of Isotopes. 8th ed. New York: Wiley; 1996.

    Google Scholar 

  11. Kam BL, Teunissen JJ, Krenning EP, de Herder WW, Khan S, van Vliet EI, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:103–12.

    Article  CAS  PubMed Central  Google Scholar 

  12. Swärd C, Bernhardt P, Johanson V, Schmitt A, Ahlman H, Stridsberg M, et al. Comparison of [177Lu-DOTA0,Tyr3]-octreotate and [177Lu-DOTA0,Tyr3]-octreotide for receptor-mediated radiation therapy of the xenografted human midgut carcinoid tumor GOT1. Cancer Biother Radiopharm. 2008;23:114–20.

    Article  PubMed  Google Scholar 

  13. Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.

  14. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28:836–46.

    Article  CAS  PubMed  Google Scholar 

  15. Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL, et al. [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med. 2001;28(9):1319–25.

    Article  CAS  PubMed  Google Scholar 

  16. Esser JP, Krenning EP, Teunissen JJ, Kooij PP, van Gameren AL, Bakker WH, et al. Comparison of [(177)Lu-DOTA(0), Tyr(3)]octreotate and [(177)Lu-DOTA(0), Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33:1346–51.

    Article  CAS  PubMed  Google Scholar 

  17. Forrer F, Uusijärvi H, Storch D, Maecke HR, Mueller-Brand J. Treatment with 177Lu-DOTATOC of patients with relapse of neuroendocrine tumors after treatment with 90Y-DOTATOC. J Nucl Med. 2005;46:1310–6.

    CAS  PubMed  Google Scholar 

  18. Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM, et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38:2125–35.

    Article  CAS  PubMed  Google Scholar 

  19. Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23:2754–62.

  20. Todorović-Tirnanić M, Kaemmerer D, Prasad V, Hommann M, Baum RP. Intraoperative somatostatin receptor detection after peptide receptor radionuclide therapy with (177)Lu- and (90)Y-DOTATOC (tandem PRRNT) in a patient with a metastatic neuroendocrine tumor. Recent Results Cancer Res. 2013;194:487–96.

    PubMed  Google Scholar 

  21. Garkavij M, Nickel M, Sjögreen-Gleisner K, Ljungberg M, Ohlsson T, Wingårdh K, et al. 177Lu-[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: analysis of dosimetry with impact on future therapeutic strategy. Cancer. 2010;116:1084–92.

  22. Wehrmann C, Senftleben S, Zachert C, Müller D, Baum RP. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm. 2007;22:406–16.

    Article  CAS  PubMed  Google Scholar 

  23. Khan S, Krenning EP, van Essen M, Kam BL, Teunissen JJ, Kwekkeboom DJ. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Nucl Med. 2011;52:1361–8.

  24. van Vliet EI, Hermans JJ, de Ridder MA, Teunissen JJ, Kam BL, de Krijger RR, et al. Tumor response assessment to treatment with [177Lu-DOTA0, Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors: differential response of bone versus soft-tissue lesions. J Nucl Med. 2012;53:1359–66.

    Article  PubMed  Google Scholar 

  25. van Essen M, Krenning EP, Kam BL, de Herder WW, Feelders RA, Kwekkeboom DJ. Salvage therapy with (177)Lu-octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2010;51:383–9.

    Article  PubMed  Google Scholar 

  26. Breeman WA, Mearadji A, Capello A, Bernard BF, van Eijck CH, Krenning EP, et al. Anti-tumor effect and increased survival after treatment with [177Lu-DOTA0, Tyr3]octreotate in a rat liver micrometastases model. Int J Cancer. 2003;104:376–9.

  27. Chakraborty S, Das T, Banerjee S, Balogh L, Chaudhari PR, Sarma HD, et al. 177Lu-EDTMP : a viable bone pain palliative in skeletal metastasis. Cancer Biother Radiopharm. 2008;23:202–13.

    Article  CAS  PubMed  Google Scholar 

  28. Chakraborty S, Das T, Sarma HD, Venkatesh M, Banerjee S. Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot. 2008;66:1196–205.

    Article  CAS  PubMed  Google Scholar 

  29. Máthé D, Balogh L, Polyák A, Király R, Márián T, Pawlak D, et al. Multispecies animal investigation on biodistribution, pharmacokinetics and toxicity of 177Lu-EDTMP, a potential bone pain palliation agent. Nucl Med Biol. 2010;37:215–26.

    Article  PubMed  Google Scholar 

  30. Yuan J, Liu C, Liu X, Wang Y, Kuai D, Zhang G, et al. Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a Phase II study. Clin Nucl Med. 2013;38:88–92.

    Article  PubMed  Google Scholar 

  31. Abbasi IA. Preliminary studies on (177)Lu-labeled sodium pyrophosphate (177Lu-PYP) as a potential bone-seeking radiopharmaceutical for bone pain palliation. Nucl Med Biol. 2012;39:763–9.

    Article  CAS  PubMed  Google Scholar 

  32. Abbasi IA. Studies on 177Lu-labeled methylene diphosphonate as potential bone-seeking radiopharmaceutical for bone pain palliation. Nucl Med Biol. 2011;38:417–25.

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Li H, Xiang X, Luo Z, Wang Y, Kuai D, et al. Timing and optimized acquisition parameters for the whole-body imaging of 177Lu-EDTMP toward performing bone pain palliation treatment. Nucl Med Commun. 2012;33:90–6.

    Article  CAS  PubMed  Google Scholar 

  34. Bard DR, Knight CG, Page-Thomas DP. Effect of the intra-articular injection of lutetium-177 in chelator liposomes on the progress of an experimental arthritis in rabbits. Clin Exp Rheumatol. 1985;3:237–42.

    CAS  PubMed  Google Scholar 

  35. Abbasi I, Ishfaq M, Sohaib M. Preparation and pre-clinical study of 177Lu-labelled hydroxyapatite for application in radiation synovectomy of small joints. Q J Nucl Med Mol Imaging. 2011;55:458–68.

    CAS  PubMed  Google Scholar 

  36. Chakraborty S, Das T, Banerjee S, Sarma HD, Venkatesh M. Preparation and preliminary biological evaluation of 177Lu-labelled hydroxyapatite as a promising agent for radiation synovectomy of small joints. Nucl Med Commun. 2006;27:661–8.

    Article  PubMed  Google Scholar 

  37. Teyssler P, Kolostova K, Bobek V. Radionuclide synovectomy in haemophilic joints. Nucl Med Commun. 2013;34:291–7.

    Article  PubMed  Google Scholar 

  38. Chakraborty S, Vimalnath KV, Rajeswari A, Shinto A, Sarma HD, Kamaleshwaran K, et al. Preparation, evaluation, and first clinical use of (177) Lu-labeled hydroxyapatite (HA) particles in the treatment of rheumatoid arthritis: utility of cold kits for convenient dose formulation at hospital radiopharmacy. J Labelled Comp Radiopharm. 2014;57:453–62.

    Article  CAS  PubMed  Google Scholar 

  39. Chakraborty S, Vimalnath KV, Rajeswari A, Sarma HD, Shinto A, Radhakrishnan ER, et al. Radiolanthanide-labeled HA particles in the treatment of rheumatoid arthritis: ready-to-use cold kits for rapid formulation in hospital radiopharmacy. J Radioanal Nucl Chem. 2014;302:875–81.

    Article  CAS  Google Scholar 

  40. Meredith RF, Partridge EE, Alvarez RD, Khazaeli MB, Plott G, Russell CD, et al. Intraperitoneal radioimmunotherapy of ovarian cancer with lutetium-177-CC49. J Nucl Med. 1996;37:1491–6.

    CAS  PubMed  Google Scholar 

  41. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Semin Oncol. 2003;30:667–76.

    Article  CAS  PubMed  Google Scholar 

  42. Rasaneh S, Rajabi H, Babaei MH, Daha FJ, Salouti M. Radiolabeling of trastuzumab with 177Lu via DOTA, a new radiopharmaceutical for radioimmunotherapy of breast cancer. Nucl Med Biol. 2009;36:363–9.

    Article  CAS  PubMed  Google Scholar 

  43. Vera DR, Eigner S, Henke KE, Lebeda O, Melichar F, Beran M. Preparation and preclinical evaluation of 177Lu-nimotuzumab targeting epidermal growth factor receptor overexpressing tumors. Nucl Med Biol. 2012;39:3–13.

    Article  PubMed  Google Scholar 

  44. Forrer F, Oechslin-Oberholzer C, Campana B, Herrmann R, Maecke HR, Mueller-Brand J, et al. Radioimmunotherapy with 177Lu-DOTA-rituximab: final results of a phase I/II Study in 31 patients with relapsing follicular, mantle cell, and other indolent B-cell lymphomas. J Nucl Med. 2013;54:1045–52.

    Article  CAS  PubMed  Google Scholar 

  45. Liu Z, Ma T, Liu H, Jin Z, Sun X, Zhao H, et al. 177Lu-Labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm. 2014;11:800–7.

    Article  PubMed  Google Scholar 

  46. Kelly MP, Lee ST, Lee FT, Smyth FE, Davis ID, Brechbiel MW, et al. Therapeutic efficacy of 177Lu-CHX-A''-DTPA-hu3S193 radioimmunotherapy in prostate cancer is enhanced by EGFR inhibition or docetaxel chemotherapy. Prostate. 2009;69:92–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mughabghab SF. Atlas of Neutron Resonances, Resonance Parameters and Thermal Cross Sections, Z ¼ 1–100. Amsterdam: Elsevier; 2006.

    Google Scholar 

  48. Nir-El Y. Production of 177Lu by neutron activation of 176Lu. J Radional Nucl Chem. 2004;3:563–7.

    Article  Google Scholar 

  49. Dvorakova Z, Henkelmann R, Lin X, Turler A, Gerstenberg H. Production of 177Lu at the new research reactor FRM-II: irradiation yield of 176Lu(n, γ)177Lu. Appl Radiat Isot. 2008;66:147–51.

    Article  CAS  PubMed  Google Scholar 

  50. Zhernosekov KP, Perego RC, Dvorakova Z, Henkelmann R, Türler A. Target burn-up corrected specific activity of 177Lu produced via 176Lu(n, gamma) 177Lu nuclear reactions. Appl Radiat Isot. 2008;66:1218–20.

  51. Holden NE. Temperature dependence of the Westcott g-factor for neutron reactions in activation analysis. Pure Appl Chem. 1999;71:2309–15.

    Article  CAS  Google Scholar 

  52. De Corte F, Simonits A. Recommended nuclear data for use in the k0 standardization of neutron activation analysis. Atomic Data Nucl Data Tables. 2003;85:47–67.

    Article  Google Scholar 

  53. Breeman WA, De Jong M, Visser TJ, Erion JL, Krenning EP. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging. 2003;30:917–20.

    Article  CAS  PubMed  Google Scholar 

  54. Chakraborty S, Vimalnath KV, Lohar SP, Shetty P, Dash A. On the practical aspects of large-scale production of 177Lu for peptide receptor radionuclide therapy using direct neutron activation of 176Lu in a medium flux research reactor: The Indian experience. J Radioanal Nucl Chem. 2014;302:233–43.

    Article  CAS  Google Scholar 

  55. Vimalnath KV, Shetty P, Lohar SP, Adya SVC, Thulasidas SK, Chakraborty S, et al. Aspects of yield and specific activity of (n, γ) produced 177Lu used in targeted radionuclide therapy. J Radioanal Nucl Chem. 2014;302:809–12.

  56. Knapp Jr FF, Ambrose KR, Beets AL, Luo H, McPherson DW, Mirzadeh S. Nuclear medicine program progress report for quarter ending September 30, 1995. ORNL/TM-13107.

  57. Mirzadeh S, Du M, Beets AL, Knapp Jr FF. Method for preparing high specific activity 177Lu. United States Patent. 2004;6716353:6.

    Google Scholar 

  58. Henkelmann R, Hey A, Buck O, Zhernosekov K Nikula, T. Radiation Protection Aspects Related to Lutetium-177 Use in Hospitals, Abstracts of Intl. Workshop “Physics for Health in Europe” (CERN Geneva Switzerland, 2-4 February 2010), Book of Abstracts, 23 available at https://indico.cern.ch/event/70767/material/32/0.pdf .

  59. Hammond CR. The Elements, in Handbook of Chemistry and Physics 81st edition. CRC Press, Boca Raton, FL, & London, UK. 2000.

  60. Stary J. Separation of transplutonium elements. Talanta. 1966;13:421–37.

    Article  CAS  PubMed  Google Scholar 

  61. Denzler FO, Lebedev NA, Novgorodov AF, Roesch F, Qaim SM. Production and radiochemical separation of 147Gd. Appl Radiat Isot. 1997;48:319–26.

    Article  CAS  Google Scholar 

  62. Marhol M. Ion Exchangers in Analytical Chemistry: Their Properties and Use in Inorganic Chemistry. Praha, Prague, Czech Republic: Academia; 1982.

    Google Scholar 

  63. Balasubramanian PS. Separation of carrier-free lutetium-177 from neutron irradiated natural ytterbium target. J Radioanal Nucl Chem. 1994;185:305–10.

    Article  CAS  Google Scholar 

  64. Hashimoto K, Matsuoka H, Uchida S. Production of no-carrier-added 177Lu via the 176Yb(n, γ)177Yb → 177Lu process. J Radioanal Nucl Chem. 2003;255:575–9.

    Article  CAS  Google Scholar 

  65. Lahiri S, Nayak D, Nandy M, Das NR. Separation of carrier free lutetium produced in proton activated ytterbium with HDEHP. Appl Radiat Isot. 1998;49:911–3.

    Article  CAS  Google Scholar 

  66. Kumrić K, Trtić-Petrović T, Koumarianou E, Archimandritis S, Čomor JJ. Supported liquid membrane extraction of 177Lu(III) with DEHPA and its application for purification of 177Lu-DOTA-lanreotide. Sep Pur Tech. 2006;51:310–31.

    Article  Google Scholar 

  67. Knapp Jr FF, Mirzadeh S, Beets AL, Du M. Production of therapeutic radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for applications in nuclear medicine, oncology and interventional cardiology. J Radioanal Nucl Chem. 2005;263:503–9.

    Article  CAS  Google Scholar 

  68. Horwitz EP, Mc Alister DR, Bond AH, Barrans RE, Williamson JM. A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl Radiat Isot. 2005;63:23–36.

    Article  CAS  PubMed  Google Scholar 

  69. Le VS, Morcos N, Zaw M, Pellegrini P, Greguric I. Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation. Part I. Multi-column chromatographic process for clinically applicable. J Radioanal Nucl Chem. 2008;277:663–73.

    Article  Google Scholar 

  70. Le VS, Morcos N, Zaw M, Pellegrini P, Greguric I, Nevissi A. Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation. Part II. The conventional column chromatographic separation combined with HPLC for high purity. J Radioanal Nucl Chem. 2008;277:675–83.

    Article  Google Scholar 

  71. Dash A, Chakravarty R. Electrochemical separation: promises, opportunities, and challenges to develop next-generation radionuclide generators to meet clinical demands. Ind Eng Chem Res. 2014;53:3766–77.

    Article  CAS  Google Scholar 

  72. Chakravarty R, Dash A, Pillai MRA. Electrochemical separation is an attractive strategy for development of radionuclide generators for medical applications. Curr Radiopharm. 2012;5:271–87.

    Article  CAS  PubMed  Google Scholar 

  73. Marsh JK. Rare earth metal amalgams, Part 1. J Chem Soc. 1942;1:398–401.

    Article  Google Scholar 

  74. Marsh JK. Rare earth metal amalgams, Part 2. J Chem Soc. 1942;1:523–6.

    Article  Google Scholar 

  75. Marsh JK. Rare earth metal amalgams, Part 3. J Chem Soc. 1943;2:8–10.

    Article  Google Scholar 

  76. Marsh JK. Rare earth metal amalgams, Part 4. J Chem Soc. 1943;2:531–5.

    Article  Google Scholar 

  77. McCoy HN. Europium and ytterbium amalgams. J Am Chem Soc. 1941;63:1622–4.

    Article  CAS  Google Scholar 

  78. Onstott EI. The separation of europium from samarium by electrolysis. J Am Chem Soc. 1955;77:2129–32.

    Article  CAS  Google Scholar 

  79. Onstott EI. Separation of the Lanthanons at Amalgam Cathodes. II. The separation of samarium from gadolinium and purification of europium at a lithium amalgam cathode. J Am Chem Soc. 1956;78:2070–6.

    Article  CAS  Google Scholar 

  80. Lebedev NA, Novgorodov AF, Misiak R, Brockmann J, Roesch F. Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n, γ)177Yb → 177Lu process. Appl Radiat Isot. 2000;53:421–5.

  81. Bilewicz A, Zuchowska K, Bartos B. Separation of Yb as YbSO4 from 176Yb target for production of 177Lu via the 176Yb(n, γ)177Yb → 177Lu process. J Radioanal Nucl Chem. 2009;280:167–9.

    Article  CAS  Google Scholar 

  82. Chakravarty R, Das T, Dash A, Venkatesh M. An electro-amalgamation approach to isolate no-carrier-added 177Lu from neutron irradiated 177Yb for biomedical applications. Nucl Med Biol. 2010;37:811–20.

    Article  CAS  PubMed  Google Scholar 

  83. Hermanne A, Takacs S, Goldberg MB, Lavie E, Shubin YN, Kovalev S. Deuteron-induced reactions on Yb: Measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides. Nucl Instr Meth B. 2006;247:223–31.

    Article  CAS  Google Scholar 

  84. Manenti S, Groppi F, Gandini A, Gini L, Abbas K, Holzwarth U, et al. Excitation function for deuteron induced nuclear reactions on natural ytterbium for production of high specific activity Lu-177 g in no carrier added form for metabolic radiotherapy. Appl Radiat Isot. 2011;69:37–45.

    Article  CAS  PubMed  Google Scholar 

  85. Tárkányi F, Ditrói F, Takács S, Hermanne A, Yamazaki H, Baba M, et al. Activation cross-sections of longer lived products of deuteron induced nuclear reactions on ytterbium up to 40 MeV. Nucl Instr Meth B. 2013;304:36–48.

    Article  Google Scholar 

Download references

Conflict of Interest

Ashutosh Dash, Maroor Raghavan Ambikalmajan Pillai and Furn F. (Russ) Knapp, Jr., declare that they have no conflict of interest.

Informed Consent

The manuscript does not contain clinical studies. There is no identifiable patient information in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Dash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, A., Pillai, M.R.A. & Knapp, F.F. Production of 177Lu for Targeted Radionuclide Therapy: Available Options. Nucl Med Mol Imaging 49, 85–107 (2015). https://doi.org/10.1007/s13139-014-0315-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-014-0315-z

Keywords

Navigation