Skip to main content
Log in

The Effect of Cold Rolling on Microstructure and Mechanical Properties of a New Cr–Mn Austenitic Stainless Steel in Comparison with AISI 316 Stainless Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present study the effect of room temperature rolling on microstructure and mechanical properties of a new Cr–Mn austenitic stainless steel (containing 12 %Cr, 23 %Mn and 0.13 %C) and AISI 316 steel was investigated. The specimens of these steels were cold rolled at various thickness reductions of 0, 12, 25, 37 and 50 %. Microstructural investigations were carried out using optical microscopy, magnetic field test and X-ray diffraction technique. Hardness and tensile test methods were also done to evaluate the mechanical properties. Results showed that some of austenite phase transformed to martensite during cold rolling in the 316 steel, while there was no strain induced transformation in the Cr–Mn steel. It was also found that the newly developed steel had higher strength and higher specific strength than those of the 316 steel, while its ductility was the same as that of the 316.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Washko S D, and Aggen G, ASM handbook vol 1: properties and selection, 3rd ed, ASM International, New York (2005), p 1303.

  2. Marshal P, Austenitic Stainless Steel: Microstructure and Mechanical Properties, 1st ed, Elsevier Science Publishing, New York (1984), p 80.

    Google Scholar 

  3. Oshima Y H T, and Kuroda K, ISIJ Int 47 (2007) 359.

    Article  Google Scholar 

  4. Hamada A S, Karjalainen L P, Misra R D K, and Talonen J, Mater Sci Eng A 559 (2013) 336.

    Article  Google Scholar 

  5. Barman H, Hamada A S, Sahu T, Mahato B, Talonen J, Shee S K, Sahu P, Porter D A, and Karjalainen L P, Metall Mater Trans A 45 (2014) 1937.

    Article  Google Scholar 

  6. Klueh R L and Maziasz P J, Mater Sci Eng A 127 (1990) 17.

    Article  Google Scholar 

  7. Klueh D S G R L, Okada M, and Packan N H, Reduced Activation Materials for Fusion Reactors, ASTM International, New York (1990), p 7.

    Book  Google Scholar 

  8. Lo K H, Shek C H, and Lai J K L, Mater Sci Eng A 65 (2009) 39.

    Article  Google Scholar 

  9. Michler T, and Naumann J, Int J Hydrog Energy 3 (2010) 1485.

    Article  Google Scholar 

  10. Simmons J W, Mater Sci Eng A 207 (1996) 159.

    Article  Google Scholar 

  11. Piatti G, and Schiller P, J Nucl Mater 141 (1986) 417.

    Article  Google Scholar 

  12. Hedayati A, Najafizadeh A, Kermanpur A, Forouzan F, J Mater Process Technol 210 (2010) 1017.

    Article  Google Scholar 

  13. Farahat A I Z, and El-Bitar T A, Mater Sci Eng A 527 (2010) 3662.

    Article  Google Scholar 

  14. Silva P M D O, Abreu H F G D, Albuquerque V H C D, Neto P D L, and Tavares J M R S, Mater Des 32 (2011) 605.

    Article  Google Scholar 

  15. Milad M, Zreiba N, Elhalouani F, and Baradai C, J Mater Process Technol 203 (2008) 80.

    Article  Google Scholar 

  16. Kim J W, and Byun T S, J Nucl Mater 396 (2010) 1.

    Article  Google Scholar 

  17. Földeáki M, Ledbetter H, and Uggowitzer P, J Magnetism Magnetic Mater 110 (1992) 185.

    Article  Google Scholar 

  18. Putatunda S K, and Unni S, Lawes G, Mater Sci Eng A, 406 (2005) 254.

    Article  Google Scholar 

  19. Han G, He J, Fukuyama S, and Yokogawa K, Acta Mater 46 (1998) 4559.

    Article  Google Scholar 

  20. Michler T, San Marchi C, Naumann J, Weber S, and Martin M, Int J Hydrog Energy 37 (2012) 16231.

    Article  Google Scholar 

  21. Fattah-Alhosseini A, and Asadi Asadabad M, Iran J Mater Sci Eng 11 (2014) 20.

    Google Scholar 

  22. Fattah-Alhosseini A, Shirsalimi F, Yousefi M, and Abedi A, J Mater Environ Sci 5 (2014) 1847.

    Google Scholar 

  23. Fattah-Alhosseinia A, Izadia B, and Asadabadb M A, J Adv Mater Proc 2 (2014) 55.

    Google Scholar 

  24. Wasnik D N, Dey G K, Kain V, and Samajdar I, Scripta Mater 49 (2003) 135.

    Article  Google Scholar 

  25. Vander Voort G F, ASM Handbook vol 9: Metalography and Microstructure, 5th ed, ASM International, New York (1992) p 730.

  26. Chagas P A B G M P, Barbosa C A, and Machado I F, Procedia CIRP 8 (2013) 293.

    Article  Google Scholar 

  27. Yoo J D and Park K-T, Mater Sci Eng A 496 (2008) 417.

    Article  Google Scholar 

  28. Mujica S W L, and Theisen W, Mater Science Forum 706 (2012) 2193.

    Article  Google Scholar 

  29. Nakano J A, and Jacques P J, Calphad 34 (2010) 167.

    Article  Google Scholar 

  30. Gavriljuk V, Petrov Y, and Shanina B, Scripta Mater 55 (2006) 537.

    Article  Google Scholar 

  31. Sande R E, Metall Mater Trans A 11 (1980) 1033.

    Article  Google Scholar 

  32. Lee T-H, Shin E, Oh C-S, Ha H-Y, and Kim S-J, Acta Mater 58 (2010) 3173.

    Article  Google Scholar 

  33. Bigdeli Karimi M, Arabi H, Khosravani A, and Samei J, J Mater Proc Technol 203 (2008) 349.

  34. Eskandari M, Kermanpur A, and Najafizadeh A, Mater Lett 63 (2009) 1442.

    Article  Google Scholar 

  35. Eskandari M, Najafizadeh A, and Kermanpur A, Mater Sci Eng A 519 (2009) 46.

    Article  Google Scholar 

  36. Nakada N, Ito H, Matsuoka Y, Tsuchiyama T, and Takaki S, Acta Mater 58 (2010) 895.

    Article  Google Scholar 

  37. Chowdhury S G, Das S, and De P K, Acta Mater 53 (2005) 3951.

    Article  Google Scholar 

  38. Park M, Kim K, Yun J, Shin G, and Kim S, Tribol Lett, 54 (2014) 1.

    Article  Google Scholar 

  39. Badji M H A R, J Mater Eng Perform 11 (2002) 145.

    Article  Google Scholar 

  40. Ohkubo K M N, Uematsu Y, and Kimura H, ISIJ Int 34 (1994) 764.

    Article  Google Scholar 

  41. Xue Z-Y, Zhou SH, and Wei X-Ch, J Iron Steel Res Int 17 (2010) 51.

  42. Eskandari M, Zarei-Hanzaki A, and Marandi A, Mater Des 39 (2012) 279.

    Article  Google Scholar 

  43. Krauss G, Steels: Processing, Structure and Performance, 1st ed, ASM International, New York (2005), p 505.

    Google Scholar 

  44. Wilsdorf H G F, Mater Sci Eng A 59 (1983) 1.

    Article  Google Scholar 

  45. Das A, Sivaprasad S, Chakraborti P C, and Tarafder S, Mater Sci Eng A 496 (2008) 98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mahmoudiniya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudiniya, M., Kheirandish, S. & Asadiasadabad, M. The Effect of Cold Rolling on Microstructure and Mechanical Properties of a New Cr–Mn Austenitic Stainless Steel in Comparison with AISI 316 Stainless Steel. Trans Indian Inst Met 70, 1251–1259 (2017). https://doi.org/10.1007/s12666-016-0921-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0921-9

Keywords

Navigation