Skip to main content

Advertisement

Log in

An Effective Conversion of Cotton Waste Biomass to Ethanol: A Critical Review on Pretreatment Processes

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Cotton based textile industries are one of the major source of revenue to the Indian economy. India contributes around 30 % of world’s total cotton cultivation every year. Cotton accounts for more than 70 % of total textile production in the country. Cotton is subjected to various processes to produce cotton based textile apparels. During the processing of cotton, more amount of cotton-based wastes are generated and they are landfilled or incinerated, in general. Cotton textile industries are facing critical problems on solid-waste management, which results in environmental pollution and health hazards. These wastes comprise lignin, hemicellulose and cellulose, which can be utilized as sustainable feedstock for the production of bioethanol. Cotton based lignocellulosic biomass requires specific pretreatment strategy to efficiently remove lignin and to solubilize hemicellulose, which increases the accessibility of hydrolytic enzymes during saccharification. Till date, various pretreatment technologies such as physical, physico-chemical, acid/alkali-, ionic liquids (ILs) and biological treatment methods are widely evaluated for lignin removal, hemicellulose solubilization and cellulose crystallinity reduction in cotton wastes to enhance the enzymatic hydrolysis and fermentation process. This paper reviews about different pretreatment methods implemented and its significance for the conversion of cotton wastes to bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ethanol India-Information and useful links. http://www.ethanolindia.net/ (2015). Accessed 23 April 2015

  2. Kumar, D., Murthy, G.S.: Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol. Biofuels 4, 27 (2011)

    Article  Google Scholar 

  3. Chavan, R.B.: Indian textile industry-Environmental issues. Indian J. Fibre Text. Res. 26, 11–21 (2001)

    Google Scholar 

  4. Babu, B.R., Parande, A.K., Raghu, S., Kumar, T.P.: Textile technology cotton textile processing: waste generation and effluent treatment. J. Cotton Sci. 11, 141–153 (2007)

    Google Scholar 

  5. Goswami, B.C., Martindale, J.G., Scardino, F.L.: Textile Yarns Technology, Structure, and Applications. Wiley Interscience Publication, New York (1995)

    Google Scholar 

  6. Placido, J., Imam, T., Capareda, S.: Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresour. Technol. 139, 203–208 (2013)

    Article  Google Scholar 

  7. Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550 (2012)

    Article  Google Scholar 

  8. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)

    Article  Google Scholar 

  9. Shi, J., Sharma-Shivappa, R.R., Chinn, M.S.: Microbial pretreatment of cotton stalks by submerged cultivation of Phanerochaete chrysosporium. Bioresour. Technol. 100, 4388–4395 (2009)

    Article  Google Scholar 

  10. Agblevor, F.A., Batz, S., Trumbo, J.: Composition and ethanol production potential of cotton gin residues. Appl. Biochem. Biotechnol. 105, 219–230 (2003)

    Article  Google Scholar 

  11. Jeihanipour, A., Taherzadeh, M.J.: Ethanol production from cotton-based waste textiles. Bioresour. Technol. 100, 1007–1010 (2009)

    Article  Google Scholar 

  12. Sharma-Shivappa, R.R., Chen, Y.: Conversion of cotton wastes to bioenergy and value-added products. Trans. ASABE 51, 2239–2246 (2008)

    Article  Google Scholar 

  13. Reddy, N., Yang, Y.: Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour. Technol. 100, 3563–3569 (2009)

    Article  Google Scholar 

  14. Shen, J., Agblevor, F.A.: Ethanol production of semi-continuous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge. Bioprocess Biosyst. Eng. 34, 33–43 (2011)

    Article  Google Scholar 

  15. Chen, J., Guo, J.: Improving the conversion efficiency of waste cotton to bioethanol by microwave hydrolysis technology. Sustain. Environ. Res. 23, 333–339 (2013)

    Google Scholar 

  16. Safartalab, K., Dadashian, F., Vahabzadeh, F.: Fed batch enzymatic hydrolysis of cotton and viscose waste fibers to produce ethanol. Univers. J. Chem. 2, 11–15 (2014)

    Google Scholar 

  17. Agblevor, F.A., Ibrahim, M.M., El-Zawawy, W.K.: Coupled acid and enzyme mediated production of microcrystalline cellulose from corn cob and cotton gin waste. Cellulose 14, 247–256 (2007)

    Article  Google Scholar 

  18. Arthe, R., Rajesh, R., Rajesh, E.M., Rajendran, R., Jeyachandran, S.: Production of bio-ethanol from cellulosic cotton waste through microbial extracellular enzymatic hydrolysis and fermentation. Electron. J. Environ. Agric. Food Chem. 7, 2984–2992 (2008)

    Google Scholar 

  19. Jeihanipour, A., Karimi, K., Taherzadeh, M.J.: Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnol. Bioeng. 105, 469–476 (2010)

    Article  Google Scholar 

  20. Mahalakshmi, M., Angayarkanni, J., Rajendran, R., Rajesh, R.: Bioconversion of cotton waste from textile mills to bioethanol by microbial saccharification and fermentation. Ann. Biol. Res. 2, 380–388 (2011)

    Google Scholar 

  21. Wu, M., Zhao, D., Pang, J., Zhang, X., Li, M., Xu, F., Sun, R.: Separation and characterization of lignin obtained by catalytic hydrothermal pretreatment of cotton stalk. Ind. Crops Prod. 66, 123–130 (2015)

    Article  Google Scholar 

  22. Hu, X., Hsieh, Y.: Crystalline structure of developing cotton fibers. J. Polym. Sci., Part B Polym. Phys. 34, 1451–1459 (1996)

    Article  Google Scholar 

  23. Chornet, E., Overend, R.P.: Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments. Proceedings of the International Workshop on Steam Explosion Techniques: Fundamentals and Industrial Applications, Philadelphia, pp. 21–58 (1991)

  24. Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., Ramakrishnan, S.: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011, 1–17 (2011)

    Article  Google Scholar 

  25. Joeh, T., Agblevor, F.A.: Characterization and fermentation of steam exploded cotton gin waste. Biomass Bioenergy 21, 109–120 (2001)

    Article  Google Scholar 

  26. Joeh, T.: Steam Explosion Pretreatment of Cotton Gin Waste for Fuel Ethanol Production. MSc Thesis Blacksburg, Virginia (1998)

  27. Agblevor, F.A., Cundiff, J.S., Mingle, C., Li, W.: Storage and characterization of cotton gin waste for ethanol production. Resour. Conserv. Recycl. 46, 198–216 (2006)

    Article  Google Scholar 

  28. Vani, S., Binod, P., Kuttiraja, M., Sindhu, R., Sandhya, S.V., Preeti, V.E., Sukumaran, R.K., Pandey, A.: Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and hydrolysis for fermentable sugar production for biofuel application. Bioresour. Technol. 112, 300–307 (2012)

    Article  Google Scholar 

  29. Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K.U., Sukumaran, R.K., Pandey, A.: Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew. Energ. 37, 109–116 (2012)

    Article  Google Scholar 

  30. Hermiati, E., Azuma, J., Tsubaki, S., Mangunwidjaja, D., Sunarti, T.C., Suparno, O., Prasetya, B.: Improvement of microwave-assisted hydrolysis of cassava pulp and tapioca flour by addition of activated carbon. Carbohyd. Polym. 87, 939–942 (2012)

    Article  Google Scholar 

  31. Ooshima, H., Aso, K., Harano, Y.: Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol. Lett. 6, 289–294 (1984)

    Article  Google Scholar 

  32. Chen, W., Ye, S., Sheen, H.: Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl. Energy 93, 237–244 (2012)

    Article  Google Scholar 

  33. Du, S., Zhu, X., Wang, H., Zhou, D., Yang, W., Xu, H.: High pressure assist-alkali pretreatment of cotton stalk and physiochemical characterization of biomass. Bioresour. Technol. 148, 494–500 (2013)

    Article  Google Scholar 

  34. Nitsos, C.K., Matis, K.A., Triantafyllidis, K.S.: Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. Chem. Sus. Chem. 6, 110–122 (2013)

    Article  Google Scholar 

  35. Lu, F.C., Ralph, J.: Solution-state NMR of lignocellulosic biomass. J. Biobased Mater. Bioenergy 5, 169–180 (2011)

    Article  Google Scholar 

  36. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y.: Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 96, 1959–1966 (2005)

    Article  Google Scholar 

  37. Dogaris, I., Karapati, S., Mamma, D., Kalogeris, E., Kekos, D.: Hydrothermal processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates production. Bioresour. Technol. 100, 6543–6549 (2009)

    Article  Google Scholar 

  38. Yu, G., Yano, S., Inoue, H., Inoue, S., Endo, T., Sawayama, S.: Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl. Biochem. Biotechnol. 160, 539–551 (2010)

    Article  Google Scholar 

  39. Hansen, M.A., Kristensen, J.B., Felby, C., Jørgensen, H.: Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L)—the impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresour. Technol. 102, 2804–2811 (2011)

    Article  Google Scholar 

  40. Kumar, S., Kothari, U., Kong, L.Z., Lee, Y.Y., Gupta, R.B.: Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass Bioenergy 35, 956–968 (2011)

    Article  Google Scholar 

  41. Torget, R., Walter, P., Himmel, M., Grohmann, K.: Dilute acid pretreatment of corn residues and short-rotation woody crops. Appl. Biochem. Biotechnol. 28–29, 75–86 (1991)

    Article  Google Scholar 

  42. Karimi, K.: Lignocellulose-based bioproducts: Biofuel and Biorefinery Technologies. Springer International Publishing, Switzerland (2015)

    Book  Google Scholar 

  43. Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., Osborne, J.: A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Biorsour. Technol. 98, 3000–3011 (2007)

    Article  Google Scholar 

  44. Imamoglu, E., Sukan, F.V.: The effects of single and combined cellulosic agrowaste substrates on bioethanol production. Fuel 134, 477–484 (2014)

    Article  Google Scholar 

  45. Akpinar, O., Levent, O., Bostanci, S., Bakir, U., Yilmaz, L.: The optimization of dilute acid hydrolysis of cotton stalk in xylose production. Appl. Biochem. Biotechnol. 163, 313–325 (2011)

    Article  Google Scholar 

  46. Weil, J.R., Dien, B., Bothast, R., Hendrickson, R., Mosier, N.S., Ladisch, M.R.: Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind. Eng. Chem. Res. 41, 6132–6138 (2002)

    Article  Google Scholar 

  47. Sandhya, S.V., Kiran, K., Kuttiraja, M., Preeti, V.E., Sindhu, R., Vani, S., Kumar, S.R., Pandey, A., Binod, P.: Evaluation of polymeric adsorbent resins for efficient detoxification of liquor generated during acid pretreatment of lignocellulosic biomass. Indian J. Exp. Biol. 51, 1012–1017 (2013)

    Google Scholar 

  48. Tarkov, H., Feist, W.C.: A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. In: Gould, R.F. (ed.) Cellulases and their Applications, pp. 197–218. American Chemical Society, Washington (1969)

    Chapter  Google Scholar 

  49. Fernandes, T.V., Bos, G.J.K., Zeeman, G., Sanders, J.P.M., Van-Lier, J.B.: Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresour. Technol. 100, 2575–2579 (2009)

    Article  Google Scholar 

  50. Kim, S., Holtzapple, M.T.: Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 1994–2006 (2005)

    Article  Google Scholar 

  51. Kaur, U., Oberoi, H.S., Bhargav, V.K., Sharma-Shivappa, R., Dhaliwal, S.S.: Ethanol production from alkali- and ozone-treated cotton stalks using thermotolerant Pichia kudriavzevii HOP-1. Ind. Crops Prod. 37, 219–226 (2012)

    Article  Google Scholar 

  52. Liu, C., Wang, F., Stiles, A.R., Guo, C.: Ionic liquids for biofuel production: opportunities and challenges. Appl. Energy 92, 406–414 (2012)

    Article  Google Scholar 

  53. Zhao, H., Jones, C.L., Baker, G.A., Xia, S., Olubajo, O., Person, V.N.: Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 139, 47–54 (2009)

    Article  Google Scholar 

  54. Haykir, N.I., Bahcegul, E., Bicak, N., Bakir, U.: Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Ind. Crops Prod. 41, 430–436 (2013)

    Article  Google Scholar 

  55. López-Abelairas, M., Lu-Chau, T.A., Lema, J.M.: Enhanced saccharification of biologically pretreated wheat straw for ethanol production. Appl. Biochem. Biotechnol. 169, 1147–1159 (2013)

    Article  Google Scholar 

  56. Ravikumar, R., Ranganathan, B.V., Chathoth, K.N., Gobikrishnan, S.: Innovative and intensified technology for the biological pretreatment of agro waste for ethanol production. Korean J. Chem. Eng. 30, 1051–1057 (2013)

    Article  Google Scholar 

  57. Zhang, J., Ren, X., Chen, W., Bao, J.: Biological pretreatment of corn stover by solid state fermentation of Phanerochaete chrysosporium. Front. Chem. Sci. Eng. 6, 146–151 (2012)

    Article  Google Scholar 

  58. Pena, R., Lu-Chau, T.A., Lema, J.M.: Use of white-rot fungi for valorization of stillage from bioethanol production. Waste Biomass Valoriz. 3, 295–303 (2012)

    Article  Google Scholar 

  59. Thakur, S., Shrivastava, B., Ingale, S., Kuhad, R.C., Gupte, A.: Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. 3 Biotech 3, 365–372 (2013)

    Article  Google Scholar 

  60. Deswal, D., Gupta, R., Nandal, P., Kuhad, R.C.: Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohyd. Polym. 99, 264–269 (2014)

    Article  Google Scholar 

  61. Gnanambal, V.S., Jabastin, J., Swaminathan, K.: Biological pretreatment of six lignocellulosic wastes for bioethanol production. Int. J. Sci. Res. 3, 1860–1864 (2014)

    Google Scholar 

  62. Xu, C., Ma, F., Zhang, X., Chen, S.: Biological Pretreatment of Corn Stover by Irpex lacteus for Enzymatic Hydrolysis. J. Agric. Food Chem. 58, 10893–10898 (2010)

    Article  Google Scholar 

  63. Shi, J., Chinn, M.S., Sharma-Shivappa, R.R.: Microbial pretreatment of cotton stalks by solid state cultivation of Phanerachaete chrysosporium. Bioresour. Technol. 99, 6556–6564 (2008)

    Article  Google Scholar 

  64. Tien, M., Kirk, T.K.: Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161, 238–249 (1988)

    Article  Google Scholar 

  65. Klein-Marcuschamer, D., Simmons, B.A., Blanch, H.W.: Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod. Bioref. 5, 562–569 (2011)

    Article  Google Scholar 

  66. Eggeman, T., Elander, T.R.: Process and economic analysis of pretreatment technologies. Bioresour. Technol. 96, 2019–2025 (2005)

    Article  Google Scholar 

  67. Kazi, F.K., Fortman, J., Anex, R., Kothandaraman, G., Hsu, D., Aden, A., Dutta, A.: Techno-Economic analysis of biochemical scenarios for production of cellulosic ethanol Technical Report NREL/TP-6A2-46588 June, United States Department of Energy (2010)

  68. Chandel, A.K., Chan, E.S., Rudravaram, R., Narasu, M.L., Rao, L.V., Ravindra, P.: Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev. 2, 12–32 (2007)

    Google Scholar 

  69. Oleskowicz-Popiel, P., Klein-Marcuschamer, D., Simmons, B.A., Blanch, H.W.: Lignocellulosic ethanol production without enzymes—Technoeconomic analysis of ionic liquid pretreatment followed by acidolysis. Bioresour. Technol. 158, 294–299 (2014)

    Article  Google Scholar 

  70. Akpinar, O., Ak, O., Kavas, A., Bakir, U., Yilmaz, L.: Enzymatic production of xylooligosaccharides from cotton stalks. J. Agric. Food Chem. 55, 5544–5551 (2007)

    Article  Google Scholar 

  71. Shen, J., Agblevor, F.A.: Optimization of enzyme loading and hydrolytic time in the hydrolysis of mixtures of cotton gin waste and recycled paper sludge for the maximum profit rate. Biochem. Eng. J. 41, 241–250 (2008)

    Article  Google Scholar 

  72. Binod, P., Kuttiraja, M., Archana, M., Janu, K.U., Sindhu, R., Sukumaran, R.K., Pandey, A.: High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 92, 340–345 (2012)

    Article  Google Scholar 

  73. McIntosh, S., Vancov, T., Palmer, J., Morris, S.: Ethanol production from cotton gin trash using optimized dilute acid pretreatment and whole slurry fermentation processes. Bioresour. Technol. 173, 42–51 (2014)

    Article  Google Scholar 

  74. Shi, J., Sharma-Shivappa, R.R., Chinn, M., Howell, N.: Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33, 88–96 (2009)

    Article  Google Scholar 

  75. Placido, J., Capareda, S.: Analysis of alkali ultrasonication pretreatment in bioethanol production from cotton gin trash using FT-IR spectroscopy and principal component analysis. Bioresour. Bioprocess. 1, 23 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Tamil Nadu State Council for Science and Technology (TNSCST) for sanctioning fund (TNSCST/S&T-Projects/VR/ES/2013-14) to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarathinam Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjithkumar, M., Ravikumar, R., Sankar, M.K. et al. An Effective Conversion of Cotton Waste Biomass to Ethanol: A Critical Review on Pretreatment Processes. Waste Biomass Valor 8, 57–68 (2017). https://doi.org/10.1007/s12649-016-9563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9563-8

Keywords

Navigation