Skip to main content

Advertisement

Log in

Nicotine Restores Wt-Like Levels of Reelin and GAD67 Gene Expression in Brain of Heterozygous Reeler Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Important reduction of reelin, a neural development- and plasticity-associated protein, and glutamic acid decarboxylase (GAD67) are reported in brains of schizophrenic patients. These individuals are consistently engaged in tobacco smoking and nicotine is thought to alleviate negative behavioral symptoms or cognitive alterations. In mouse brain, nicotine has been shown to reduce GAD67 promoter methylation and increase its transcription. We assessed the effects of administration of nicotine (1 mg/kg s.c.) for 6 days, in male mice heterozygous for reelin (HRM), a putative model for symptoms related to schizophrenia. Expression of reelin, GAD67 and brain-derived neurotrophic factor (BDNF) was measured in different brain areas. RNA expression analysis evidenced genotype-related changes, with a marked reduction in reelin and GAD67 gene expression in prefrontal cortex, hippocampus, cerebellum, and striatum from HRM. Nicotine treatment selectively reversed the HRM-related phenotype in most brain areas and increased BDNF gene expression in cortex and hippocampus of both genotypes. Locomotor performance in their home cage revealed that HRM subjects were characterized by general hyperactivity; with nicotine administration restoring WT-like levels of locomotion. These findings are interpreted within the hypothesis of pre-existing vulnerability (based on haploinsufficiency of reelin) to brain and behavioral disorders and regulative effects associated with nicotine exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, Shafa R, Glatt SJ, Nguyen G, Ponte JF, Thiagalingam S, Tsuang MT (2005) Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 134B:60–66

    Article  PubMed  Google Scholar 

  • Adriani W, Laviola G (2004) Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 15:341–352

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Macri S, Pacifici R, Laviola G (2002) Peculiar vulnerability to nicotine oral self-administration in mice during early adolescence. Neuropsychopharmacology 27:212–224

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Seta DD, Dessi-Fulgheri F, Farabollini F, Laviola G (2003) Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to bisphenol A. Environ Health Perspect 111:395–401

    Article  PubMed  CAS  Google Scholar 

  • Agid O, Shapira B, Zislin J, Ritsner M, Hanin B, Murad H, Troudart T, Bloch M, Heresco-Levy U, Lerer B (1999) Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatry 4:163–172

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE Jr, Jones EG (1995) GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 5:550–560

    Article  PubMed  CAS  Google Scholar 

  • Andresen JH, Loberg EM, Wright M, Goverud IL, Stray-Pedersen B, Saugstad OD (2009) Nicotine affects the expression of brain-derived neurotrophic factor mRNA and protein in the hippocampus of hypoxic newborn piglets. J Perinat Med 37:553–560

    Article  PubMed  CAS  Google Scholar 

  • Arenas E, Akerud P, Wong V, Boylan C, Persson H, Lindsay RM, Altar CA (1996) Effects of BDNF and NT-4/5 on striatonigral neuropeptides or nigral GABA neurons in vivo. Eur J Neurosci 8:1707–1717

    Article  PubMed  CAS  Google Scholar 

  • Ballmaier M, Zoli M, Leo G, Agnati LF, Spano P (2002) Preferential alterations in the mesolimbic dopamine pathway of heterozygous reeler mice: an emerging animal-based model of schizophrenia. Eur J Neurosci 15:1197–1205

    Article  PubMed  Google Scholar 

  • Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J (2005) Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor apoer2. Neuron 47:567–579

    Article  PubMed  CAS  Google Scholar 

  • Biamonte F, Assenza G, Marino R, D’Amelio M, Panteri R, Caruso D, Scurati S, Yague JG, Garcia-Segura LM, Cesa R, Strata P, Melcangi RC, Keller F (2009) Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje cell survival. Neurobiol Dis 36:103–115

    Article  PubMed  CAS  Google Scholar 

  • Brioni JD, O’Neill AB, Kim DJ, Decker MW (1993) Nicotinic receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur J Pharmacol 238:1–8

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, Herz J (2005) Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 25:8209–8216

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C (2001) Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis 8:723–742

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Chen Y, Davis J, Dong E, Noh JS, Tremolizzo L, Veldic M, Grayson DR, Guidotti A (2002) Reelin and schizophrenia: a disease at the interface of the genome and the epigenome. Mol Interv 2:47–57

    Article  PubMed  CAS  Google Scholar 

  • Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3:12–29

    PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    Article  PubMed  Google Scholar 

  • Dong E, Guidotti A, Grayson DR, Costa E (2007) Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci USA 104:4676–4681

    Article  PubMed  CAS  Google Scholar 

  • D’Souza MS, Markou A (2012) Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits. Neuropharmacology 62:1564–1573

    Article  PubMed  Google Scholar 

  • Fatemi SH, Earle JA, McMenomy T (2000) Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5(654–63):571

    Article  PubMed  Google Scholar 

  • Fatemi SH, Stary JM, Egan EA (2002) Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder. Cell Mol Neurobiol 22:139–152

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH, Snow AV, Stary JM, Araghi-Niknam M, Reutiman TJ, Lee S, Brooks AI, Pearce DA (2005) Reelin signaling is impaired in autism. Biol Psychiatry 57:777–787

    Article  PubMed  CAS  Google Scholar 

  • Forsyth JK, Ellman LM, Tanskanen A, Mustonen U, Huttunen MO, Suvisaari J, Cannon TD (2012) Genetic Risk for Schizophrenia, Obstetric Complications, and Adolescent School Outcome: Evidence for Gene–Environment Interaction. Schizophr Bull

  • Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749

    Article  PubMed  CAS  Google Scholar 

  • Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D’Anselmi F, Coluccia P, Calamandrei G, Scarpa S (2008) B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 37:731–746

    Article  PubMed  CAS  Google Scholar 

  • Fuso A, Nicolia V, Cavallaro RA, Scarpa S (2011) DNA methylase and demethylase activities are modulated by one-carbon metabolism in alzheimer’s disease models. J Nutr Biochem 22:242–251

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G (2011) Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 33:383–390

    Article  PubMed  CAS  Google Scholar 

  • Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 102:9341–9346

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E (2000) Decrease in reelin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Haukvik UK, Saetre P, McNeil T, Bjerkan PS, Andreassen OA, Werge T, Jonsson EG, Agartz I (2010) An exploratory model for G×E interaction on hippocampal volume in schizophrenia; obstetric complications and hypoxia-related genes. Prog Neuropsychopharmacol Biol Psychiatry 34:1259–1265

    Article  PubMed  CAS  Google Scholar 

  • Herz J, Chen Y (2006) Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci 7:850–859

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143:993–997

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Yahata N, Ito I, Nagano M, Toyota T, Yoshikawa T, Okubo Y, Suzuki H (2008) Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia. Schizophr Res 101:58–66

    Article  PubMed  Google Scholar 

  • Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723

    Article  PubMed  CAS  Google Scholar 

  • Jindal RD, Pillai AK, Mahadik SP, Eklund K, Montrose DM, Keshavan MS (2010) Decreased BDNF in patients with antipsychotic naive first episode schizophrenia. Schizophr Res 119:47–51

    Article  PubMed  Google Scholar 

  • Jobe TH, Harrow M (2005) Long-term outcome of patients with schizophrenia: a review. Can J Psychiatry 50:892–900

    PubMed  Google Scholar 

  • Kandel DB, Chen K (2000) Extent of smoking and nicotine dependence in the United States: 1991–1993. Nicotine Tob Res 2:263–274

    Article  PubMed  CAS  Google Scholar 

  • Keller F, Persico AM (2003) The neurobiological context of autism. Mol Neurobiol 28:1–22

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ, File SE, Rattray M (2000) Acute nicotine decreases, and chronic nicotine increases the expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Brain Res Mol Brain Res 85:234–238

    Article  PubMed  CAS  Google Scholar 

  • Kohara K, Kitamura A, Adachi N, Nishida M, Itami C, Nakamura S, Tsumoto T (2003) Inhibitory but not excitatory cortical neurons require presynaptic brain-derived neurotrophic factor for dendritic development, as revealed by chimera cell culture. J Neurosci 23:6123–6131

    PubMed  CAS  Google Scholar 

  • Krueger DD, Howell JL, Hebert BF, Olausson P, Taylor JR, Nairn AC (2006) Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology 189:95–104

    Article  PubMed  CAS  Google Scholar 

  • Kumari V, Postma P (2005) Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 29:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Kundakovic M, Chen Y, Costa E, Grayson DR (2007) DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol 71:644–653

    Article  PubMed  CAS  Google Scholar 

  • La Salle S, Mertineit C, Taketo T, Moens PB, Bestor TH, Trasler JM (2004) Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Dev Biol 268:403–415

    Article  PubMed  Google Scholar 

  • Lang UE, Sander T, Lohoff FW, Hellweg R, Bajbouj M, Winterer G, Gallinat J (2007) Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking. Psychopharmacology 190:433–439

    Article  PubMed  CAS  Google Scholar 

  • Laviola G (1988) Ontogeny of GABAergic modulation on locomotor activity and pain reactivity in mice. Ann Ist Super Sanita 24:559–562

    PubMed  CAS  Google Scholar 

  • Laviola G, Marco EM (2011) Passing the knife edge in adolescence: brain pruning and specification of individual lines of development. Neurosci Biobehav Rev 35:1631–1633

    Article  PubMed  Google Scholar 

  • Laviola G, Adriani W, Terranova ML, Gerra G (1999) Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neurosci Biobehav Rev 23:993–1010

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Adriani W, Gaudino C, Marino R, Keller F (2006) Paradoxical effects of prenatal acetylcholinesterase blockade on neuro-behavioral development and drug-induced stereotypies in reeler mutant mice. Psychopharmacology 187:331–344

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Ognibene E, Romano E, Adriani W, Keller F (2009) Gene–environment interaction during early development in the heterozygous reeler mouse: clues for modelling of major neurobehavioral syndromes. Neurosci Biobehav Rev 33:560–572

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Rezvani AH (2007) Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function. Biochem Pharmacol 74:1182–1191

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    Article  PubMed  CAS  Google Scholar 

  • Liu WS, Pesold C, Rodriguez MA, Carboni G, Auta J, Lacor P, Larson J, Condie BG, Guidotti A, Costa E (2001) Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci USA 98:3477–3482

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Martinowich K (2008) Cell biology of BDNF and its relevance to schizophrenia. Novartis Found Symp 289: 119–129; discussion 129–35, 193–5

  • Macri S, Biamonte F, Romano E, Marino R, Keller F, Laviola G (2010) Perseverative responding and neuroanatomical alterations in adult heterozygous reeler mice are mitigated by neonatal estrogen administration. Psychoneuroendocrinology 35:1374–1387

    Article  PubMed  CAS  Google Scholar 

  • Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, Davis JM, Costa E (2010) Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci USA 107:4407–4411

    Article  PubMed  CAS  Google Scholar 

  • Marty S, Wehrle R, Sotelo C (2000) Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 20:8087–8095

    PubMed  CAS  Google Scholar 

  • Matrisciano F, Dong E, Gavin DP, Nicoletti F, Guidotti A (2010) Activation of group II metabotropic glutamate receptors promotes DNA demethylation in the mouse brain. Mol Pharmacol 80:174–182

    Article  Google Scholar 

  • Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165:243–256

    Article  PubMed  CAS  Google Scholar 

  • Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20:7116–7121

    PubMed  CAS  Google Scholar 

  • Ochoa EL, Lasalde-Dominicci J (2007) Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cell Mol Neurobiol 27:609–639

    Article  PubMed  CAS  Google Scholar 

  • Ognibene E, Adriani W, Granstrem O, Pieretti S, Laviola G (2007) Impulsivity-anxiety-related behavior and profiles of morphine-induced analgesia in heterozygous reeler mice. Brain Res 1131:173–180

    Article  PubMed  CAS  Google Scholar 

  • Ognibene E, Adriani W, Caprioli A, Ghirardi O, Ali SF, Aloe L, Laviola G (2008) The effect of early maternal separation on brain derived neurotrophic factor and monoamine levels in adult heterozygous reeler mice. Prog Neuropsychopharmacol Biol Psychiatry 32:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Olincy A, Stevens KE (2007) Treating schizophrenia symptoms with an alpha7 nicotinic agonist, from mice to men. Biochem Pharmacol 74:1192–1201

    Article  PubMed  CAS  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M (2008) Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as alzheimer’s and parkinson’s disease. Front Biosci 13:492–504

    Article  PubMed  CAS  Google Scholar 

  • Pich EM, Pagliusi SR, Tessari M, Talabot-Ayer D, Hooft van Huijsduijnen R, Chiamulera C (1997) Common neural substrates for the addictive properties of nicotine and cocaine. Science 275:83–86

    Article  PubMed  CAS  Google Scholar 

  • Pillai A, Mahadik SP (2008) Increased truncated TrkB receptor expression and decreased BDNF/TrkB signaling in the frontal cortex of reeler mouse model of schizophrenia. Schizophr Res 100:325–333

    Article  PubMed  Google Scholar 

  • Podhorna J, Didriksen M (2004) The heterozygous reeler mouse: behavioural phenotype. Behav Brain Res 153:43–54

    Article  PubMed  CAS  Google Scholar 

  • Popov NT, Stoyanova VK, Madzhirova NP, Vachev TI (2012) Epigenetic aspects in schizophrenia etiology and pathogenesis. Folia Med (Plovdiv) 54:12–16

    Google Scholar 

  • Qiu S, Weeber EJ (2007) Reelin signaling facilitates maturation of CA1 glutamatergic synapses. J Neurophysiol 97:2312–2321

    Article  PubMed  CAS  Google Scholar 

  • Qiu S, Korwek KM, Pratt-Davis AR, Peters M, Bergman MY, Weeber EJ (2006) Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol Learn Mem 85:228–242

    Article  PubMed  CAS  Google Scholar 

  • Ricceri L, De Filippis B, Fuso A, Laviola G (2011) Cholinergic hypofunction in MeCP2-308 mice: beneficial neurobehavioural effects of neonatal choline supplementation. Behav Brain Res 221:623–629

    Article  PubMed  CAS  Google Scholar 

  • Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E, Ernfors P, Ibanez CF (1998) BDNF regulates reelin expression and cajal-retzius cell development in the cerebral cortex. Neuron 21:305–315

    Article  PubMed  CAS  Google Scholar 

  • Roth TL, Sweatt JD (2011) Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm Behav 59:315–320

    Article  PubMed  CAS  Google Scholar 

  • Roth TL, Lubin FD, Sodhi M, Kleinman JE (2009) Epigenetic mechanisms in schizophrenia. Biochim Biophys Acta 1790:869–877

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A (2007) Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry 12:385–397

    Article  PubMed  CAS  Google Scholar 

  • Salinger WL, Ladrow P, Wheeler C (2003) Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav Neurosci 117:1257–1275

    Article  PubMed  Google Scholar 

  • Satta R, Maloku E, Zhubi A, Pibiri F, Hajos M, Costa E, Guidotti A (2008) Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci USA 105:16356–16361

    Article  PubMed  CAS  Google Scholar 

  • Sharma T, Antonova L (2003) Cognitive function in schizophrenia. Deficits, functional consequences, and future treatment. Psychiatr Clin North Am 26:25–40

    Article  PubMed  Google Scholar 

  • Singh A, Potter A, Newhouse P (2004) Nicotinic acetylcholine receptor system and neuropsychiatric disorders. IDrugs 7:1096–1103

    PubMed  CAS  Google Scholar 

  • Tidey JW, Rohsenow DJ, Kaplan GB, Swift RM (2005) Cigarette smoking topography in smokers with schizophrenia and matched non-psychiatric controls. Drug Alcohol Depend 80:259–265

    Article  PubMed  Google Scholar 

  • Toyooka K, Asama K, Watanabe Y, Muratake T, Takahashi M, Someya T, Nawa H (2002) Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res 110:249–257

    Article  PubMed  CAS  Google Scholar 

  • Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P, Sharma R, Grayson DR, Costa E, Guidotti A (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 99:17095–17100

    Article  PubMed  CAS  Google Scholar 

  • Tueting P, Costa E, Dwivedi Y, Guidotti A, Impagnatiello F, Manev R, Pesold C (1999) The phenotypic characteristics of heterozygous reeler mouse. NeuroReport 10:1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Tueting P, Doueiri MS, Guidotti A, Davis JM, Costa E (2006) Reelin down-regulation in mice and psychosis endophenotypes. Neurosci Biobehav Rev 30:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590

    Article  PubMed  Google Scholar 

  • Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, Guidotti A, Davis JM, Costa E (2007) Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schizophr Res 91:51–61

    Article  PubMed  Google Scholar 

  • Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci 7:213–222

    Article  PubMed  CAS  Google Scholar 

  • Ventruti A, Kazdoba TM, Niu S, D’Arcangelo G (2011) Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain. Neuroscience 189:32–42

    Article  PubMed  CAS  Google Scholar 

  • Vicario-Abejon C, Collin C, McKay RD, Segal M (1998) Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci 18:7256–7271

    PubMed  CAS  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase 67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Wang R, Ferris B, Salit J, Strulovici-Barel Y, Hackett NR, Crystal RG (2010) Smoking-mediated up-regulation of GAD67 expression in the human airway epithelium. Respir Res 11:150

    Article  PubMed  Google Scholar 

  • Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 213:1–47

    Article  PubMed  CAS  Google Scholar 

  • Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952

    Article  PubMed  CAS  Google Scholar 

  • Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 8:592–610

    Article  PubMed  CAS  Google Scholar 

  • Weickert CS, Ligons DL, Romanczyk T, Ungaro G, Hyde TM, Herman MM, Weinberger DR, Kleinman JE (2005) Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia. Mol Psychiatry 10:637–650

    Article  PubMed  CAS  Google Scholar 

  • Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama N, Matsuki N (2002) Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 22:7580–7585

    PubMed  CAS  Google Scholar 

  • Zaheer A, Haas JT, Reyes C, Mathur SN, Yang B, Lim R (2006) GMF-knockout mice are unable to induce brain-derived neurotrophic factor after exercise. Neurochem Res 31:579–584

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Xiu MH, da Chen C, Yang FD, Wu GY, Lu L, Kosten TA, Kosten TR (2010) Nicotine dependence and serum BDNF levels in male patients with schizophrenia. Psychopharmacology 212:301–307

    Article  PubMed  CAS  Google Scholar 

  • Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590–605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by IRE-IFO (RF2008) “MECP2 phosphorylation and related kinase in Rett syndrome” to GL and by Italian ministry of health, with “under 40” young-investigator project “ADHD-sythe” to Walter Adriani. We are grateful to Luigia Cancemi for animal care.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Laviola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, E., Fuso, A. & Laviola, G. Nicotine Restores Wt-Like Levels of Reelin and GAD67 Gene Expression in Brain of Heterozygous Reeler Mice. Neurotox Res 24, 205–215 (2013). https://doi.org/10.1007/s12640-013-9378-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9378-3

Keywords

Navigation