Skip to main content
Log in

GMF-Knockout Mice are Unable to Induce Brain-Derived Neurotrophic Factor after Exercise

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We earlier reported that overexpression of glia maturation factor (GMF) in cultured astrocytes enhances the production of brain-derived neurotrophic factor (BDNF). The current study was conducted to find out whether BDNF production is impaired in animals devoid of GMF. To this end GMF-knockout (KO) mice were subjected to exercise and the neurotrophin mRNAs were determined by real-time RT-PCR. Compared to wild-type (WT) mice, there is a decrease in exercise-induced BDNF in the KO mice. The observation was correlated with the finding that, in WT mice, exercise increases GMF expression. The results are consistent with the hypothesis that GMF is necessary for exercise-induction of BDNF, and that GMF may promote neuroprotection through BDNF production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BDNF:

brain-derived neurotrophic factor

CREB:

cAMP response element binding protein

GM-CSF:

granulocyte-macrophage-colony stimulating factor

GMF:

glia maturation factor

KO:

knockout

MAP kinase:

mitogen-activated protein kinase

NF-κB:

nuclear factor-κB

NGF:

nerve growth factor

NT3:

neurotrophin 3

RT-PCR:

reverse transcription-polymerase chain reaction

WT:

wild type

References

  1. Lim R, Miller JF, Zaheer A (1989) Purification and characterization of glia maturation factor beta: a growth regulator for neurons and glia. Proc Natl Acad Sci USA 86:3901–3905

    Article  PubMed  CAS  Google Scholar 

  2. Lim R, Zaheer A, Lane WS (1990) Complete amino acid sequence of bovine glia maturation factor beta. Proc Natl Acad Sci USA 87:5233–5237

    Article  PubMed  CAS  Google Scholar 

  3. Kaplan R, Zaheer A, Jaye M, Lim R (1991) Molecular cloning and expression of biologically active human glia maturation factor-beta. J Neurochem 57:483–490

    Article  PubMed  CAS  Google Scholar 

  4. International human genome sequence consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  5. Zaheer A, Weiss JL, Goyal P, Lim R (1999) Enhanced expression of neurotrophic factors by C6 rat glioma cells after transfection with glia maturation factor. Neurosci Lett 265:203–206

    Article  PubMed  CAS  Google Scholar 

  6. Pantazis NJ, Zaheer A, Dai D, Zaheer S, Green SH, Lim R (2000) Transfection of C6 glioma cells with glia maturation factor upregulates BDNF and NGF: trophic effects and protection against ethanol toxicity in cerebellar granule cells. Brain Res 865:59–76

    Article  PubMed  CAS  Google Scholar 

  7. Zaheer A, Yorek MA, Lim R (2001) Effects of glia maturation factor overexpression in primary astrocytes on MAP kinase activation, transcription factor activation, and neurotrophin secretion. Neurochem Res 26:1293–1299

    Article  PubMed  CAS  Google Scholar 

  8. Zaheer A, Mathur SN, Lim R (2002) Overexpression of glia maturation factor in astrocytes leads to immune activation of microglia through secretion of granulocyte-macrophage-colony stimulating factor. Biochem Biophys Res Commun 294:238–244

    Article  PubMed  CAS  Google Scholar 

  9. Lim R, Zaheer A (1996) In vitro enhancement of p38 mitogen-activated protein kinase activity by phosphorylated glia maturation factor. J Biol Chem 271:22953–22956

    Article  PubMed  CAS  Google Scholar 

  10. Zaheer A, Yang B, Cao X, Lim R (2004) Decreased copper-zinc superoxide dismutase activity and increased resistance to oxidative stress in glia maturation factor-null astrocytes. Neurochem Res 29:1473–1480

    Article  PubMed  CAS  Google Scholar 

  11. Lim R, Zaheer A, Khosravi H, Freeman JH Jr, Halverson HE, Wemmie JA, Yang B (2004) Impaired motor performance and learning in glia maturation factor-knockout mice. Brain Res 1024:225–232

    Article  PubMed  CAS  Google Scholar 

  12. Neeper SA, Gomez-Pinilla F, Choi J, Cotman C (1995) Exercise and brain neurotrophins. Nature 373:109

    Article  PubMed  CAS  Google Scholar 

  13. Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56

    Article  PubMed  CAS  Google Scholar 

  14. Kesslak PJ, So V, Choi J, Cotman CW, Gomez-Pinilla F (1998) Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance. Behav Neurosci 112:1012–1019

    Article  PubMed  CAS  Google Scholar 

  15. Gomez-Pinilla F, Ying Z, Opazo P, Roy RR, Edgerton VR (2001) Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci 13:1078–1084

    Article  PubMed  CAS  Google Scholar 

  16. Skup M, Dwornik A, Macia M, Sulejczak D, Wiater M, Czarkowska-Bauch J (2002) Long-term locomotor training up-regulates TrkB (FL) receptor-like proteins, brain-derived neurotrophic factor, and neurotrophin 4 with different topographies of expression in oligodendroglia and neurons in the spinal cord. Exp Neurol 176: 289–307

    Article  PubMed  CAS  Google Scholar 

  17. Pinti M, Troiano L, Nasi M (2003) Development of real time PCR assay for the quantification of Fas and FasL mRNA levels in lymphocytes: studies on centenarians, Mech Ageing Dev 124:511–516

    Article  PubMed  CAS  Google Scholar 

  18. Glebova NO, Ginty DD (2004) Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 24:743–751

    Article  PubMed  CAS  Google Scholar 

  19. Liot G, Gabriel C, Cacquevel M, Ali C, MacKenzie ET, Buisson A, Vivien D (2004) Neurotrophins-3−induced PI-3 kinase/Akt signaling rescues cortical neurons from apoptosis. Exp Neurol 187:38–46

    Article  PubMed  CAS  Google Scholar 

  20. Szapacs ME, Numis AL, Andrews AM (2004) Late onset loss of hippocampal 5−HT and NE is accompanied by increases in BDNF protein expression in mice co-expressing mutant APP and PSI. Neurobiol Dis 16:572–580

    Article  PubMed  CAS  Google Scholar 

  21. Michot B, Bachellerie JP, Raynal F, Renalier JH (1982) Sequence of the 3’-terminal domain of mouse 18 S rRNA. Conservation of structural features with other pro- and eukaryotic homologs. FEBS Lett 142:260–266

    Article  PubMed  CAS  Google Scholar 

  22. Zaheer A, Fink BD, Lim R (1993) Expression of glia maturation factor β mRNA and protein in rat organs and cells. J Neurochem 60:914–920

    Article  PubMed  CAS  Google Scholar 

  23. Field EJ, Born E, Mathur SN (2004) Stanol esters decrease plasma cholesterol independently of intestinal ABC sterol transporters and Niemann-Pick C1−like 1 protein gene expression. J Lipid Res 45:2252–2259

    Article  PubMed  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  25. Tong L, Shen H, Perreau VM, Balazs R, Cotman CW (2001) Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 8:1046–1056

    Article  PubMed  CAS  Google Scholar 

  26. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301

    Article  PubMed  CAS  Google Scholar 

  27. Fillit HM, Butler RN, O’Connell AW, Albert MS, Birren JE, Cotman CW, Greenough WT, Gold PE, Kramer AF, Kuller LH, Perls TT, Sahagan BG, Tully T (2002) Achieving and maintaining cognitive vitality with aging. Mayo Clin Proc 77:681–696

    Article  PubMed  Google Scholar 

  28. Lazarov O, Robinson J, Tang Y-P, Hairston IS, Korade-Mirnics Z Lee VMY, Hersh B, Sapolsky RM, Mirnincs K, Sisodia SS (2005) Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120:701–713

    Article  PubMed  CAS  Google Scholar 

  29. Poo M-M (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:1–9

    Article  CAS  Google Scholar 

  30. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726

    Article  PubMed  CAS  Google Scholar 

  31. Xing J, Kornhauser JM, Xia Z, Thiele EA, Greenberg ME (1998) Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activate protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol 18:1946–1955

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Veterans Affairs Merit Review Award (to A. Z. and R. L.) and by NIH grant NS-47145 (to A.Z.). We thank Timothy J., Brennan for the use of the treadmill machine and Mariam Bridget Zimmerman for statistical analysis. GMF-knockout mice were produced at the University of Iowa Gene Targeting Core Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Zaheer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaheer, A., Haas, J.T., Reyes, C. et al. GMF-Knockout Mice are Unable to Induce Brain-Derived Neurotrophic Factor after Exercise. Neurochem Res 31, 579–584 (2006). https://doi.org/10.1007/s11064-006-9049-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9049-3

Keywords

Navigation