Skip to main content
Log in

Paradoxical effects of prenatal acetylcholinesterase blockade on neuro-behavioral development and drug-induced stereotypies in reeler mutant mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Epidemiological and experimental studies support a link between genetic and epigenetic factors in vulnerability to develop enduring neurobehavioral alterations. We studied the interplay between genetic vulnerability and the prenatal exposure to a neurotoxic compound. Chlorpyrifos, a potent and reversible acetylcholinesterase blocker used as a pesticide, and the “reeler” mouse, lacking the extracellular-matrix protein Reelin, were used.

Materials and methods

Homozygous reeler (RL), heterozygous (HZ), and wild-type (WT) mice were prenatally exposed to chlorpyrifos-oxon (CPF-O), the active metabolite of chlorpyrifos, or to vehicle (prenatal controls) on gestation days 14–16, that is, during a peak period of neurogenesis in the cerebral cortex. The offspring was reared by the natural dam and tested during infancy and at adulthood for global consequences of the prenatal exposure.

Conclusion

The results are consistent with complex interactions between genetic (reeler genotype) and epigenetic (prenatal exposure to CPF-O) factors. In the case of some “genetically modulated” parameters (ultrasound vocalization, amphetamine-induced locomotion, and stereotypy), exposure to CPF-O paradoxically reverted the effects produced by progressive reelin absence. Conversely, for an “epigenetically modulated” parameter (grasping reflex maturation), the effects of CPF-O exposure were counteracted by progressive reelin absence. Finally, for parameters apparently untouched by either factor alone (righting reflex latency, scopolamine-induced locomotor activity), prenatal CPF-O exposure unmasked an otherwise latent genotype dependency. This complex picture also points to reciprocal adaptations within cholinergic and dopaminergic systems during development. Data are interesting in view of recently discovered cholinergic abnormalities in autism and schizophrenia, and may suggest new avenues for early intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DA:

dopamine

Ach:

acetylcholine

AchE:

acetylcholinesterase

RL:

reeler homozygous mice

HZ:

reeler heterozygous mice

WT:

wild-type mice

CPF-O:

chlorpyrifos oxon

VEH:

vehicle

References

  • Adriani W, Laviola G (2000) A unique hormonal and behavioral hyporesponsivity to both forced novelty and d-amphetamine in periadolescent mice. Neuropharmacology 39:334–346

    Article  PubMed  CAS  Google Scholar 

  • Aldridge JE, Meyer A, Seidler FJ, Slotkin TA (2005) Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect 113:1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Ballmaier M, Zoli M, Leo G, Agnati LF, Spano P (2002) Preferential alterations in the mesolimbic dopamine pathway of heterozygous reeler mice: an emerging animal-based model of schizophrenia. Eur J Neurosci 15:1197–1205

    Article  PubMed  Google Scholar 

  • Betancourt AM, Carr RL (2004) The effect of chlorpyrifos and chlorpyrifos-oxon on brain cholinesterase, muscarinic receptor binding, and neurotrophin levels in rats following early postnatal exposure. Toxicol Sci 77:63–71

    Article  PubMed  CAS  Google Scholar 

  • Branchi I, Campolongo P, Alleva E (2003) Scopolamine effects on ultrasonic vocalization emission and behavior in the neonatal mouse. Behav Brain Res 151:9–16

    Article  CAS  Google Scholar 

  • Bymaster FP, Felder C, Ahmed S, McKinzie D (2002) Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS Neurol Disord 1:163–181

    Article  PubMed  CAS  Google Scholar 

  • Caviness VS (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based on [3H]thymidine autoradiography. Brain Res 256:293–302

    PubMed  Google Scholar 

  • Chanda SM, Pope CN (1996) Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol Biochem Behav 53:771–776

    Article  PubMed  CAS  Google Scholar 

  • Chanda SM, Harp P, Liu J, Pope CN (1995) Comparative developmental and maternal neuro-toxicity following acute gestational exposure to chlorpyrifos in rats. J Toxicol Environ Health 44:189–202

    Article  PubMed  CAS  Google Scholar 

  • Cole TB, Walter BJ, Shih DM, Tward AD, Lusis AJ, Timchalk C, Richter RJ, Costa LG, Furlong CE (2005) Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase (PON1) Q192R polymorphism. Pharmacogenet Genomics 15:589–598

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C (2001) Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis 8: 723–742

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Davis J, Pesold C, Tueting P, Guidotti A (2002) The heterozygote reeler mouse as a model for the development of a new generation of antipsychotics. Curr Opin Pharmacol 2:56–62

    Article  PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Miao GG, Curran T (1996) Detection of the reelin breakpoint in reeler mice. Brain Res Mol Brain Res 39:234–236

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Xiang YY, Farchi N, Ju W, Wu Y, Chen L, Wang Y, Hochner B, Yang B, Soreq H, Lu WY (2004) Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 24:8950–8960

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Elwood RW, Keeling F (1982) Temporal organization of ultrasonic vocalisation in infant mice. Dev Psychobiol 15:221–227

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH (2001) Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 6:129–133

    Article  PubMed  CAS  Google Scholar 

  • Fox WM (1965) Reflex ontogeny and behavioural development of the mouse. Anim Behav 13:234–244

    Article  PubMed  CAS  Google Scholar 

  • Friedman JI (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology 174:45–53

    Article  PubMed  CAS  Google Scholar 

  • Furlong CE, Li WF, Costa LG, Richter RJ, Shih DM, Lusis AJ (1998) Genetically determined susceptibility to organophosphorus insecticides and nerve agents: developing a mouse model for the human PON1 polymorphism. Neurotoxicology 19:645–650

    PubMed  CAS  Google Scholar 

  • Furlong CE, Cole TB, Jarvik GP, Pettan-Brewer C, Geiss GK, Richter RJ, Shih DM, Tward AD, Lusis AJ, Costa LG (2005) Role of paraoxonase (PON1) status in pesticide sensitivity: genetic and temporal determinants. Neurotoxicology 26:651–659

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ayllon MS, Segui D, Perales M, Lopez-Hurtado E, Prieto JJ, Saez-Valero J (2003) Acetylcholinesterase level and molecular isoforms are altered in brain of reelin Orleans mutant mice. J Neurochem 87:773–779

    Article  PubMed  CAS  Google Scholar 

  • Gottesman II, Hanson DR (2005) Human development: biological and genetic processes. Annu Rev Psychol 2:263–286

    Article  Google Scholar 

  • Granon S, Faure P, Changeux JP (2003) Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci USA 100:9596–9601

    Article  PubMed  CAS  Google Scholar 

  • Gronier B, Perry KW, Rasmussen K (2000) Activation of the mesocorticolimbic dopaminergic system by stimulation of muscarinic cholinergic receptors in the ventral tegmental area. Psychopharmacology 147:347–355

    Article  PubMed  CAS  Google Scholar 

  • Hyde TM, Crook JM (2001) Cholinergic systems and schizophrenia: primary pathology or epiphenomena? J Chem Neuroanat 22:53–63

    Article  PubMed  CAS  Google Scholar 

  • Icenogle LM, Christopher NC, Blackwelder WP, Caldwell DP, Qiao D, Seidler FJ, Slotkin TA, Levin ED (2004) Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation. Neurotoxicol Teratol 26:95–101

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Chung YC, Li Z, Dai J, Meltzer HY (2002) Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 958:176–184

    Article  PubMed  CAS  Google Scholar 

  • Keller F, Persico AM (2003) The neurobiological context of autism. Mol Neurobiol 28:1–22

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Renna G, Bignami G, Cuomo V (1988) Ontogenetic and pharmacological dissociation of various components of locomotor activity and habituation in the rat. Int J Dev Neurosci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R, Iversen P, Bauman M, Perry E (2002) Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125:1483–1495

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Addy N, Baruah A, Elias A, Christopher NC, Seidler FJ (2002) Prenatal chlorpyrifos exposure in rats causes persistent behavioural alterations. Neurotoxicol Teratol 24:733–741

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Chakraborti T, Pope C (2002) In vitro effects of organophosphorus anticholinesterases on muscarinic receptor-mediated inhibition of acetylcholine release in rat striatum. Toxicol Appl Pharmacol 178:102–108

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Maric D, Li BS, Hu Q, Andreadis JD, Grant GM, Liu QY, Shaffer KM, Chang YH, Zhang L, Pancrazio JJ, Pant HC, Stenger DA, Barker JL (2000) Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation. Eur J Neurosci 12:1227–1240

    Article  PubMed  CAS  Google Scholar 

  • Martin MR (1981) Acetylcholinesterase-positive fibers and cell bodies in the cochlear nuclei of normal and reeler mutant mice. J Comp Neurol 197:153–167

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ruiz CM, Lee M, Perry RH, Baumann M, Court JA, Perry EK (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res 123:81–90

    Article  PubMed  CAS  Google Scholar 

  • Mathur A, Shandarin A, LaViolette SR, Parker J, Yeomans JS (1997) Locomotion and stereotypy induced by scopolamine: contributions of muscarinic receptors near the pedunculopontine tegmental nucleus. Brain Res 775:144–155

    Article  PubMed  CAS  Google Scholar 

  • Mount HT, Dreyfus CF, Black IB (1994) Muscarinic stimulation promotes cultured Purkinje cell survival: a role for acetylcholine in cerebellar development? J Neurochem 63:2065–2073

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S, Goto S, Yamada K, Hamasaki T, Ushio Y (2003) Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Reln(rl) mutant mice. J Comp Neurol 461:166–173

    Article  PubMed  CAS  Google Scholar 

  • Niu S, Renfro A, Quattrocchi CC, Sheldon M, D’Arcangelo G (2004) Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71–84

    Article  PubMed  CAS  Google Scholar 

  • Pappas GD, Kriho V, Pesold C (2001) Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy. J Neurocytol 30:413–425

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Lee ML, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, Folly E, Iversen PE, Bauman ML, Perry RH, Wenk GL (2001) Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry 158:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Phelps PE, Rich R, Dupuy-Davies S, Rios Y, Wong T (2002) Evidence for a cell-specific action of Reelin in the spinal cord. Dev Biol 244:180–198

    Article  PubMed  CAS  Google Scholar 

  • Qiao D, Seidler FJ, Tate CA, Cousins MM, Slotkin TA (2003) Fetal chlorpyrifos exposure: adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood. Environ Health Perspect 111:536–544

    Article  PubMed  CAS  Google Scholar 

  • Riley BP, McGuffin P (2000) Linkage and associated studies of schizophrenia. Am J Med Genet 97:23–44

    Article  PubMed  CAS  Google Scholar 

  • Salinger WL, Ladrow P, Wheeler C (2003) Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav Neurosci 117:1257–1275

    Article  PubMed  Google Scholar 

  • Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9:1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MD, Jeppesen L, Sheardown MJ, Sauerberg P, Fink-Jensen A (2000) Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42:249–259

    Article  PubMed  CAS  Google Scholar 

  • Slotkin TA, Seidler FJ (2005) The alterations in CNS serotonergic mechanisms caused by neonatal chlorpyrifos exposure are permanent. Brain Res Dev Brain Res 158:115–119

    Article  PubMed  CAS  Google Scholar 

  • Staton DM, Solomon PR (1984) Microinjections of d-amphetamine into the nucleus accumbens and caudate-putamen differentially affects stereotypy and locomotion in the rat. Physiol Psychol 12:159–162

    CAS  Google Scholar 

  • Tandon R (1999) Cholinergic aspects of schizophrenia. Br J Psychiatry 37:7–11

    Google Scholar 

  • Tandon R, Shipley JE, Greden JF, Mann NA, Eisner WH, Goodson JA (1991) Muscarinic cholinergic hyperactivity in schizophrenia. Relationship to positive and negative symptoms. Schizophr Res 4:23–30

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum O, Benton T, Shah PK, Prince A, Kelly JL, Teitelbaum P (2004) Eshkol–Wachman movement notation in diagnosis: the early detection of Asperger’s syndrome. Proc Natl Acad Sci USA 101:11909–11914

    Article  PubMed  CAS  Google Scholar 

  • Tirelli E, Laviola G, Adriani W (2003) Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neurosci Biobehav Rev 27:163–178

    Article  PubMed  Google Scholar 

  • Tueting P, Costa E, Dwivedi Y, Guidotti A, Impagnatiello F, Manev R, Pesold C (1999) The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 10:1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952

    Article  PubMed  CAS  Google Scholar 

  • Whyatt RM, Barr DA (2001) Measurement of organophosphate metabolites in postpartum meconium as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect 109:417–420

    Article  PubMed  CAS  Google Scholar 

  • Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57:915–921

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Liu J, Pope CN (2002) Age-related effects of chlorpyrifos on muscarinic receptor-mediated signaling in rat cortex. Arch Toxicol 75:676–684

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIH-ISS joint Research Project (0F14) and by Dipartimento Nazionale Anti-Droga, Pres. Cons. Min. (Italy) to GL; by Grants from the National Alliance for Autism Research (NAAR, Princeton, USA) and from the “Associazione Amici del Campus Bio-Medico” (Italy) to FK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Laviola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laviola, G., Adriani, W., Gaudino, C. et al. Paradoxical effects of prenatal acetylcholinesterase blockade on neuro-behavioral development and drug-induced stereotypies in reeler mutant mice. Psychopharmacology 187, 331–344 (2006). https://doi.org/10.1007/s00213-006-0426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0426-z

Keywords

Navigation