Skip to main content

Advertisement

Log in

Preparation of narrow band gap V2O5/TiO2 composite films by micro-arc oxidation

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

V2O5/TiO2 composite films were prepared on pure titanium substrates via micro-arc oxidation (MAO) in electrolytes consisting of NaVO3. Their morphology and elements were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Phase composition and valence states of species in the films were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were also employed to evaluate the photophysical property of the films. The V2O5/TiO2 composite films show a sheet-like morphology. Not only V2O5 phase appears in the films when the NaVO3 concentration of the electrolyte is higher than 6.10 g/L and is loaded at the surface of anatase, but also V4+ is incorporated into the crystal lattice of anatase. In comparison with pure TiO2 films the V2O5/TiO2 composite films exhibit significantly narrow band gap energy. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the narrowest band gap energy, which is approximately 1.89 eV. The V2O5/TiO2 composite films also have the significantly enhanced visible light photocatalytic activity. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the best photocatalytic activity and about 93% of rhodamine is degraded after 14 h visible light radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Chen, Y. Ku, and Y.L. Kuo, Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis, Water Res., 41(2007), No.10, p.2069.

    Article  CAS  Google Scholar 

  2. W. Chu, W.K. Choy, and T.Y. So, The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline, J. Hazard. Mater., 141(2007), No.1, p.86.

    Article  CAS  Google Scholar 

  3. B. Kosowska, S. Mozia, A.W. Morawski, B. Grzmil, M. Janus, and K. Kalucki, The preparation of TiO2-nitrogen doped by calcination of TiO2·xH2O under ammonia atmosphere for visible light photocatalysis, Sol. Energy Mater. Sol. Cells, 88(2005), No.3, p.269.

    Article  CAS  Google Scholar 

  4. M. Zlamal, J.M. Macak, P. Schmuki, and J. Krýsa, Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes, Electrochem. Commun., 9(2007), No.12, p.2822.

    Article  CAS  Google Scholar 

  5. H.M. Yang, R.R. Shi, K. Zhang, Y.H. Hu, A.D. Tang, and X.W. Li, Synthesis of WO3/TiO2 nanocomposites via sol-gel method, J. Alloys Compd., 398(2005), No.1–2, p.200.

    Article  CAS  Google Scholar 

  6. X.W. Zhang and L.C. Lei, Preparation of photocatalytic Fe2O3-TiO2 coatings in one step by metal organic chemical vapor deposition, Appl. Surf. Sci., 254(2008), No.8, p.2406.

    Article  CAS  Google Scholar 

  7. A. Franco, M.C. Neves, M.M.L.R. Carrott, M.H. Mendonca, M.I. Pereira, and O.C. Monteiro, Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites, J. Hazard. Mater., 161(2009), No.1, p.545.

    Article  CAS  Google Scholar 

  8. L.H. Lu, D.J. Shen, J.W. Zhang, J. Song, and L. Li, Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate, Appl. Surf. Sci., 257(2011), No.9, p.4144.

    Article  CAS  Google Scholar 

  9. P. Wang, J.P. Li, Y.C. Guo, and Z. Yang, Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys, J. Rare Earths, 28(2010), No.5, p.798.

    Article  Google Scholar 

  10. M.S. Kim, J.J. Ryu, and Y.M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem. Commun., 9(2007), No.8, p.1886.

    Article  CAS  Google Scholar 

  11. F.Y. Jin, P.K. Chu, K. Wang, J. Zhao, A.P. Huang, and H.H. Tong, Thermal stability of titania films prepared on titanium by micro-arc oxidation, Mater. Sci. Eng. A, 476(2008), No.1–2, p.78.

    Google Scholar 

  12. T. Kamegawa, J. Sonoda, K. Sugimura, K. Mori, and H. Yamashita, Degradation of isobutanol diluted in water over visible light sensitive vanadium doped TiO2 photocatalyst, J. Alloys Compd., 486(2009), No.1–2, p.685.

    Article  CAS  Google Scholar 

  13. Z.Y. Zhang, C.L. Shao, L.N. Zhang, X.H. Li, and Y.C. Liu, Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity, J. Colloid Interface Sci., 351(2010), No.1, p.57.

    Article  CAS  Google Scholar 

  14. M.R. Bayati, A.Z. Moshfegh, and F. Golestani-Fard, Synthesis of narrow band gap (V2O5)x-(TiO2)1−x nano-structured layers via micro arc oxidation, Appl. Surf. Sci., 256(2010), No.9, p.2903.

    Article  CAS  Google Scholar 

  15. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol., 122(1999), No.2–3, p.73.

    Article  CAS  Google Scholar 

  16. L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland, and A. Matthews, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim. Acta, 49(2004), No.13, p.2085.

    Article  CAS  Google Scholar 

  17. E. Zhuravlyova, L. Iglesias-Rubianes, A. Pakes, P. Skeldon, G. E. Thompson, X. Zhou, T. Quance, M.J. Graham, H. Habazaki, and K. Shimizu, Oxygen evolution within barrier oxide films, Corros. Sci., 44(2002), No.9, p.2153.

    Article  CAS  Google Scholar 

  18. T. Qiu, X.L. Wu, F.Y. Jin, A.P. Huang, and P.K. Chu, Self-assembled growth of MgO nanosheet arrays via a micro-arc oxidation technique, Appl. Surf. Sci., 253(2007), No.8, p.3987.

    Article  CAS  Google Scholar 

  19. B.S. Liu, X.L. Wang, G.F. Cai, L.P. Wen, Y.B. Song, and X.J. Zhao, Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies, J. Hazard. Mater., 169(2009), No.1–3, p.1112.

    Article  CAS  Google Scholar 

  20. N.Y. Yuan, J.H. Li, and C.L. Lin, Valence reduction process from sol-gel V2O5 to VO2 thin films, Appl. Surf. Sci., 191(2002), No.1–4, p.176.

    CAS  Google Scholar 

  21. D.E. Gu, B.C. Yang, and Y.D. Hu, V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation, Catal. Commun., 9(2008), No.6, p.1472.

    Article  CAS  Google Scholar 

  22. X. Yang, F.Y. Ma, K.X. Li, Y.N. Guo, J.L. Hu, W. Li, M.X. Huo, and Y.H. Guo, Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation, J. Hazard. Mater., 175(2010), No.1–3, p.429.

    Article  CAS  Google Scholar 

  23. F. Gordillo-Delgado, J.G. Mendoza-Álvarez, and O. Zelaya-Ángel, Actividad fotocatalítica con luz visible de películas de TiO2 crecidas por r.f. sputtering reactivo, Rev. Colomb. Fis., 38(2006), No.1, p.129.

    Google Scholar 

  24. C. Kittel, Introduction to Solid State Physics, 4th ed., John Wiley & Sons, Inc., New York, 1970.

    Google Scholar 

  25. J.M. Essick and R.T. Mather, Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment, Am. J. Phys., 61(1993), No.7, p.646.

    Article  Google Scholar 

  26. I. Mártil and G. González Díaz, Undergraduate laboratory experiment: Measurement of the complex refractive index and the band gap of a thin film semiconductor, Am. J. Phys., 60(1992), No.1, p.83.

    Article  Google Scholar 

  27. A. Sconza and G. Torzo, Spectroscopic measurement of the semiconductor energy gap, Am. J. Phys., 62(1994), No.8, p.732.

    Article  Google Scholar 

  28. A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting, Sol. Energy Mater. Sol. Cells, 91(2007), No.14, p.1326.

    Article  CAS  Google Scholar 

  29. E. Barajas-Ledesma, M.L. García-Benjume, I. Espitia-Cabrera, M. Ortiz-Gutiérrez, F.J. Espinoza-Beltrán, J. Mostaghimi, and M.E. Contreras-García, Determination of the band gap of TiO2-Al2O3 films as a function of processing parameters, Mater. Sci. Eng. B, 174(2010), No.1–3, p.71.

    Article  CAS  Google Scholar 

  30. K. Nagaveni, M.S. Hegde, and G. Madras, Structure and photocatalytic activity of Ti1−x MxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method, J. Phys. Chem. B, 108(2004), No.52, p.20204.

    Article  CAS  Google Scholar 

  31. B.Z. Tian, C.Z. Li, F. Gu, H.B. Jiang, Y.J. Hu, and J.L. Zhang, Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation, Chem. Eng. J., 151(2009), No.1-3, p.220.

    Article  CAS  Google Scholar 

  32. W. Choi, A. Termin, and M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98(1994), No.51, p.13669.

    Article  Google Scholar 

  33. J.W. Liu, Y.C. Fu, Q. Sun, and J.Y. Shen, TiO2 nanotubes supported V2O5 for the selective oxidation of methanol to dimethoxymethane, Microporous Mesoporous Mater., 116(2008), No.1–3, p.614.

    Article  CAS  Google Scholar 

  34. M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chem. Mater., 14(2002), No.6, p.2812.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-zhou Cai.

Additional information

This work is financially supported by the Open Research Fund of the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology in Nanchang Hangkong University (No.gf200901002) and the Analytical and Testing Center of Huazhong University of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Q., Li, Xw., Cai, Qz. et al. Preparation of narrow band gap V2O5/TiO2 composite films by micro-arc oxidation. Int J Miner Metall Mater 19, 1045–1051 (2012). https://doi.org/10.1007/s12613-012-0668-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0668-1

Keywords

Navigation