Skip to main content

Advertisement

Log in

Dependence of left ventricular functional parameters on image acquisition time in cardiac-gated myocardial perfusion SPECT

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Reduction of image acquisition time in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) examinations has been considered. However, association between left ventricular (LV) functional parameters and acquisition time is unclear.

Methods

Twenty-four patients referred to one-day stress/rest SPECT MPI examinations were imaged at rest with dual-headed gamma camera. List-mode emission data were processed into sets of cardiac-gated images corresponding to different acquisition times: 20%, 30%, 40%, 50%, 60%, 80%, and 100% of total acquisition time (30 seconds per projection). Image quality was quantitatively evaluated by computing contrast-to-noise ratio. LV volumes, wall motion, wall thickening, and mechanical dyssynchrony were quantified with automatic clinical software (QGS; Cedars-Sinai Medical Center).

Results

A significant negative dependence was found between phase analysis parameter values and image acquisition time. Differences in LV volume parameters were small but statistically significant at relative acquisition times of less than 50%. LV wall motion and wall thickening were found to be robust to the increase of noise.

Conclusions

Image acquisition time of gated SPECT MPI examination can be reduced to 15 seconds per projection without significantly affecting LV volumes, wall motion, or wall thickening. However, reduction of acquisition time has a significant effect on phase analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CNR:

Contrast-to-noise ratio

EDV:

End-diastolic volume

EF:

Ejection fraction

ESV:

End-systolic volume

LV:

Left ventricular

MPI:

Myocardial perfusion imaging

QGS:

Quantitative Gated SPECT

ROI:

Region of interest

SPECT:

Single-photon emission computed tomography

SV:

Stroke volume

References

  1. Germano G, Erel J, Lewin H, Kavanagh PB, Berman DS. Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99 m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1997;30:1360-7.

    Article  CAS  PubMed  Google Scholar 

  2. Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100:1035-42.

    Article  CAS  PubMed  Google Scholar 

  3. Travin MI, Heller GV, Johnson LL, Katten D, Ahlberg AW, Isasi CR, et al. The prognostic value of ECG-gated SPECT imaging in patients undergoing stress tc-99m sestamibi myocardial perfusion imaging. J Nucl Cardiol 2004;11:253-62.

    Article  PubMed  Google Scholar 

  4. Lairez O, Cognet T, Dercle L, Méjean S, Berry M, Bastié D, et al. Prediction of all-cause mortality from gated-SPECT global myocardial wall thickening. J Nucl Cardiol 2014;21:86-95.

    Article  PubMed  Google Scholar 

  5. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.

    Article  PubMed  Google Scholar 

  6. Boogers MM, Van Kriekinge SD, Henneman MM, Ypenburg C, Van Bommel RJ, Boersma E, et al. Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 2009;50:718-25.

    Article  PubMed  Google Scholar 

  7. He X, Links JM, Frey EC. An investigation of the trade-off between the count level and image quality in myocardial perfusion SPECT using simulated images: The effects of statistical noise and object variability on defect detectability. Phys Med Biol 2010;55:4949-61.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, et al. Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT. J Nucl Med 2001;42:687-94.

    CAS  PubMed  Google Scholar 

  9. Strauss HW, Miller DD, Wittry MD, Cerqueira MD, Garcia EV, Iskandrian AS, et al. Procedure guideline for myocardial perfusion imaging 3.3. J Nucl Med Technol 2008;36:155-61.

    Article  PubMed  Google Scholar 

  10. DePuey EG, Gadiraju R, Clark J, Thompson L, Anstett F, Shwartz SC. Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered backprojection. J Nucl Cardiol 2008;15:547-63.

    Article  PubMed  Google Scholar 

  11. Ali I, Ruddy TD, Almgrahi A, Anstett FG, Wells RG. Half-time SPECT myocardial perfusion imaging with attenuation correction. J Nucl Med 2009;50:554-62.

    Article  PubMed  Google Scholar 

  12. Armstrong IS, Arumugam P, James JM, Tonge CM, Lawson RS. Reduced-count myocardial perfusion SPECT with resolution recovery. Nucl Med Commun 2012;33:121-9.

    Article  PubMed  Google Scholar 

  13. Valenta I, Treyer V, Husmann L, Gaemperli O, Schindler MJ, Herzog BA, et al. New reconstruction algorithm allows shortened acquisition time for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2010;37:750-7.

    Article  PubMed  Google Scholar 

  14. Enevoldsen LH, Menashi CA, Andersen UB, Jensen LT, Henriksen OM. Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging. J Nucl Cardiol 2013;20:1086-92.

    Article  PubMed  Google Scholar 

  15. Chen J, Faber TL, Cooke CD, Garcia EV. Temporal resolution of multiharmonic phase analysis of ECG-gated myocardial perfusion SPECT studies. J Nucl Cardiol 2008;15:383-91.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hansen CL. Limitations of parametric modeling of the left ventricle using first harmonic analysis: Possible role for gaussian modeling. J Nucl Cardiol 2014;21:723-9.

    Article  PubMed  Google Scholar 

  17. Ludwig DR, Friehling M, Schwartzman D, Saba S, Follansbee WP, Soman P. On the importance of image gating for the assay of left ventricular mechanical dyssynchrony using SPECT. J Nucl Med 2012;53:1892-6.

    Article  PubMed  Google Scholar 

  18. Mason RE, Likar I. A new system of multiple-lead exercise electrocardiography. Am Heart J 1966;71:196-205.

    Article  CAS  PubMed  Google Scholar 

  19. Pan J, Tompkins WJ. A real-time QRS detection algorithm [Abstract]. IEEE Trans Biomed Eng 1985;BME-32:230-6.

    Article  Google Scholar 

  20. Bacharach SL, Bonow RO, Green MV. Comparison of fixed and variable temporal resolution methods for creating gated cardiac blood-pool image sequences. J Nucl Med 1990;31:38-42.

    CAS  PubMed  Google Scholar 

  21. Sohlberg A, Watabe H, Iida H. Acceleration of monte carlo-based scatter compensation for cardiac SPECT. Phys Med Biol 2008;53:N277-85.

    Article  CAS  PubMed  Google Scholar 

  22. Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: A comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897-903.

    Article  PubMed  Google Scholar 

  23. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su H, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47.

    CAS  PubMed  Google Scholar 

  24. Van Kriekinge SD, Nishina H, Ohba M, Berman DS, Germano G. Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging: Application to the characterization of ventricular contraction in patients with left bundle branch block. J Nucl Med 2008;49:1790-7.

    Article  PubMed  Google Scholar 

  25. Nichols K, DePuey EG, Friedman MI, Rozanski A. Do patient data ever exceed the partial volume limit in gated SPECT studies? J Nucl Cardiol 1998;5:484-90.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Kalogeropoulos AP, Verdes L, Butler J, Garcia EV. Left-ventricular systolic and diastolic dyssynchrony as assessed by multi-harmonic phase analysis of gated SPECT myocardial perfusion imaging in patients with end-stage renal disease and normal LVEF. J Nucl Cardiol 2011;18:299-308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. van der Veen Berlinda J, Al Younis I, Ajmone-Marsan N, Westenberg JJ, Bax JJ, Stokkel MP, et al. Ventricular dyssynchrony assessed by gated myocardial perfusion SPECT using a geometrical approach: A feasibility study. Eur J Nucl Med Mol Imaging 2012;39:421-9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wieczorek H. The image quality of FBP and MLEM reconstruction. Phys Med Biol. 2010;55:3161-76.

    Article  PubMed  Google Scholar 

  29. Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: An integrated method. J Nucl Med 1999;40:650-9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Kuopio University Hospital (VTR, project 5031351) and partly by the Finnish Centre of Excellence in Inverse Problems Research, project 250215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti J. Kortelainen MSc.

Additional information

See related editorial, doi:10.1007/s12350-015-0196-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kortelainen, M.J., Koivumäki, T.M., Vauhkonen, M.J. et al. Dependence of left ventricular functional parameters on image acquisition time in cardiac-gated myocardial perfusion SPECT. J. Nucl. Cardiol. 22, 643–651 (2015). https://doi.org/10.1007/s12350-015-0178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0178-4

Keywords

Navigation