Skip to main content
Log in

Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics

  • Note
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Kitasatospora cheerisanensis KCTC 2395, producing bafilomycin antibiotics belonging to plecomacrolide group, was isolated from a soil sample at Mt. Jiri, Korea. The draft genome sequence contains 8.04 Mb with 73.6% G+C content and 7,810 open reading frames. All the genes for aerial mycelium and spore formations were confirmed in this draft genome. In phylogenetic analysis of MurE proteins (UDP-N-acetylmuramyl-L-alanyl-D-glutamate:DAP ligase) in a conserved dcw (division of cell wall) locus, MurE proteins of Kitasatospora species were placed in a separate clade between MurEs of Streptomyces species incorporating LL-diaminopimelic acid (DAP) and MurEs of Saccharopolyspora erythraea as well as Mycobacterium tuberculosis ligating meso-DAP. From this finding, it was assumed that Kitasatospora MurEs exhibit the substrate specificity for both LL-DAP and meso-DAP. The bafilomycin biosynthetic gene cluster was located in the left subtelomeric region. In 71.3 kb-long gene cluster, 17 genes probably involved in the biosynthesis of bafilomycin derivatives were deduced, including 5 polyketide synthase (PKS) genes comprised of 12 PKS modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbe, V., Bouzon, M., Mangenot, S., Badet, B., Poulain, J., Segurens, B., Vallenet, D., Marlière, P., and Weissenbach, J. 2011. Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. J. Bacteriol. 193, 5055–5056.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basavannacharya, C., Robertson, G., Munshi, T., Keep, N.H., and Bhakta, S. 2010. ATP-dependent MurE ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis 90, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417,141–147.

    Article  PubMed  Google Scholar 

  • Bignell, D.R., Seipke, R.F., Huguet-Tapia, J.C., Chambers, A.H., Parry, R.J., and Loria, R. 2010. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol. Plant Microbe Interact. 23, 161–175.

    Article  CAS  PubMed  Google Scholar 

  • Chater, K.F. and Chandra, G. 2006. The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol. Rev. 30, 651–672.

    Article  CAS  PubMed  Google Scholar 

  • Chung, Y.R., Sung, K.C., Mo, H.K., Son, D.Y., Nam, J.S., Chun, J., and Bae, K.S. 1999. Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int. J. Syst. Bacteriol. 49, 753–758.

    Article  PubMed  Google Scholar 

  • Claessen, D., de Jong, W., Dijkhuizen, L., and Wösten, H.A.B. 2006. Regulation of Streptomyces development: reach for the sky! Trends Microbiol. 14, 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Delcher, A.L., Salzberg, S.L., and Phillippy, A.M. 2003. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinformatics Chap.10. doi: 10.1002/0471250953.bi1003s00.

    Google Scholar 

  • den Hengst, C.D., Tran, N.T., Bibb, M.J., Chandra, G., Leskiw, B.K., and Buttner, M.J. 2010. Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol. Microbiol. 78, 361–379.

    Article  Google Scholar 

  • Disz T., Akhter S., Cuevas D., Olson R., Overbeek R., Vonstein V., Stevens R., and Edwards, R.A. 2010. Accessing the SEED genome databases via Web services API: tools for programmers. BMC Bioinformatics 11, 319.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hwang, J.Y., Kim, H.S., Kim, S.H., Oh, H.R., and Nam, D.H. 2013. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608. AMB Express 3, 24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hwang, J.Y., Kim, S.H., Oh, H.R., Cho, Y.J., Chun, J., Chung, Y.R., and Nam, D.H. 2014. Draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing plecomacrolide against phytopathogenic fungi. Genome Announc. 2, e00604–4.

  • Ichikawa, N., Oguchi, A., Ikeda, H., Ishikawa, J., Kitani, S., Watanabe, Y., Nakamura, S., Katano, Y., Kishi, E., Sasagawa, M., et al. 2010. Genome sequence of Kitasatospora setae NBRC 14216: An evolutionary snapshot of the family Streptomycetaceae. DNA Res. 17, 393–406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGroty, S.E., Pattaniyil, D.T., Patin, D., Blanot, D., Ravichandran, A.C., Suzuki, H., Dobson, R.C., Savka, M.A., and Hudson, A.O. 2013. Biochemical characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase (MurE) from Verrucomicrobium spinosum DSM 4136(T.). PLoS One 8, e66458.

  • Moon, S.S., Hwang, W.H., Chung, Y.R., and Shin, J. 2003. New cytotoxic bafilomycin C1-amide produced by Kitasatospora cheerisanensis. J. Antibiot. 56, 856–861.

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M., and Horinouchi, S. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190, 4050–4060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliynyk, M., Samborskyy, M., Lester, J.B., Mironenko, T., Scott, N., Dickens, S., Haydock, S.F., and Leadlay, P.F. 2007. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat. Biotechnol. 25, 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., et al. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98, 12215–12220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Omura, S., Iwai, Y., Takahashi, Y., Kojima, K., Otoguro, K., and Oiwa, R. 1981. Type of diaminopimelic acid different in aerial and vegetative mycelia of setamycin-producing actinomycete KM-6054. J. Antibiot. 34, 1633–1634.

    Article  CAS  PubMed  Google Scholar 

  • Omura, S., Takahashi, Y., Iwai, Y., and Tanaka, H. 1982. Kitasatospora, a new genus of the order Actinomycetales. J. Antibiot. 35, 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam, A. and Natarajan, J. 2012. Comparative modeling of UDP-N-acetylmuramoyl-glycyl-D-glutamate-2, 6-diaminopimelate ligase from Mycobacterium leprae and analysis of its binding features through molecular docking studies. J. Mol. Model. 18, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C.A. 2006. Structure, function and dynamics in the mur family of cell wall ligases. J. Mol. Biol. 362, 640–655.

    Article  CAS  PubMed  Google Scholar 

  • Tae, H., Sohng, J.K., and Park, K. 2009. Development of an analysis program of type I polyketide synthase gene clusters using homology search and profile hidden Markov model. J. Microbiol. Biotechnol. 19, 140–146.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, Y., Iwai, Y., and Omura, S. 1983. Relationship between cell morphology and the types of diaminopimelic acid in Kitasatospora setalba. J. Gen. Appl. Microbiol. 29, 459–465.

    Article  CAS  Google Scholar 

  • Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tatusov, R.L., Koonin, E.V., and Lipman, D.J. 1997. A genomic perspective on protein families. Science 278, 631–637.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Fortman, J.L., Carlson, J.C., Yan, J., Liu, Y., Bai, F., Guan, W., Jia, J., Matainaho, T., Sherman, D.H., et al. 2013. Characterization of the bafilomycin biosynthetic gene cluster from Streptomyces lohii. Chembiochem 14, 301–306.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Hyun Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J.Y., Kim, S.H., Oh, H.R. et al. Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics. J Microbiol. 53, 84–89 (2015). https://doi.org/10.1007/s12275-015-4340-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-4340-0

Keywords

Navigation