Skip to main content
Log in

Draft Genome of Burkholderia cenocepacia TAtl-371, a Strain from the Burkholderia cepacia Complex Retains Antagonism in Different Carbon and Nitrogen Sources

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Burkholderia cenocepacia TAtl-371 was isolated from the rhizosphere of a tomato plant growing in Atlatlahucan, Morelos, Mexico. This strain exhibited a broad antimicrobial spectrum against bacteria, yeast, and fungi. Here, we report and describe the improved, high-quality permanent draft genome of B. cenocepacia TAtl-371, which was sequenced using a combination of PacBio RS and PacBio RS II sequencing methods. The 7,496,106 bp genome of the TAtl-371 strain is arranged in three scaffolds, contains 6722 protein-coding genes, and 99 RNA only-encoding genes. Genome analysis revealed genes related to biosynthesis of antimicrobials such as non-ribosomal peptides, siderophores, chitinases, and bacteriocins. Moreover, analysis of bacterial growth on different carbon and nitrogen sources shows that the strain retains its antimicrobial ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Estrada-de los Santos P, Rojas-Rojas FU, Tapia-García EY, Vásquez-Murrieta MS, Hirsch AM (2016) To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbiol 66:1303–1314

    Article  CAS  Google Scholar 

  2. Estrada-de los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J (2013) Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 67:51–60

    Article  CAS  PubMed  Google Scholar 

  3. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dobritsa AP, Samadpour M (2016) Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846

    Article  CAS  PubMed  Google Scholar 

  5. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS, Park D, Ottoboni LMM, Neto JR, Destéfano SAL (2017) Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Anton Leeuw Int J G 110:727–736

    Article  CAS  Google Scholar 

  6. Estrada-de los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N, Maluk M, Lafos M, Humm E, Arrabit M, Crook M, Gross E, Simon MF, dos Reis Jr FB, Whitman WB, Shapiro N, Poole PS, Hirsch AM, Venter SN, James EK (2018) Whole gnome analysies suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitnas gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 9:389

    Article  CAS  PubMed Central  Google Scholar 

  7. Martina P, Leguizamon M, Prieto CI, Sousa SA, Montanaro P, Draghi WO, Stämmler M, Bettiol M, de Carvalho CCCR, Palau J (2017) Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. Int J Syst Evol Microbiol 68:14–20

    Article  PubMed  Google Scholar 

  8. Coenye T, Vandamme P, Govan JRW, LiPuma JJ (2001) Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39:3427–3436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Compant S, Nowak J, Coenye T, Clement C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626

    Article  CAS  PubMed  Google Scholar 

  10. Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P, Mahenthiralingam E (2016) Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 100:5215–5229

    Article  CAS  PubMed  Google Scholar 

  11. Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rojas-Rojas FU, Salazar-Gomez A, Vargas-Díaz ME, Vásquez-Murrieta MS, Hirsch AM, De Mot R, Ghequire MGK, Ibarra JA, Estrada-de los Santos P (2018) Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isoalted from the tomato rhizosphere. Microbiology 164:1072–1086

    Article  CAS  PubMed  Google Scholar 

  13. Guindon S (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assesing the performance of PhyML 3.0. Syst Biol 59:221–224

    Article  CAS  Google Scholar 

  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2016) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  15. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  16. Rojas-Rojas FU, Tapia-García EY, Maymon M, Humm E, Huntemann M, Clum A, Pillay M, Pananiappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Markowitz V, Ivanova N, Kyrpides N, Woyke T, Shapiro N, Hirsch AM, Estrada-de los Santos P (2017) Draft genome of Paraburkholderia caballeronis TNe-841T, a free-living, nitrogen-fixing, tomato plant-associated bacterium. Stand Genom Sci 12:80

    Article  Google Scholar 

  17. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 25:e11147

    Article  CAS  Google Scholar 

  18. Esmaeel Q, Pupin M, Kieu NP, Chataigne G, Bechet M, Deravel J, Krier F, Hofte M, Jacques P, Leclere V (2016) Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. Microbiologyopen 5:512–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esmaeel Q, Pupin M, Jacques P, Leclère V (2017) Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals. Environ Sci Pollut Res Int 25:29794–29807

    Article  CAS  PubMed  Google Scholar 

  20. Deng P, Foxfire A, Xu J, Baird SM, Jia J, Delgado KH, Shin R, Smith L, Lu S-E (2017) The siderophore product ornibactin is required for the bactericidal activity of Burkholderia contaminans MS14. Appl Environ Microbiol 83:e00051–e00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Snyder AB, Worobo RW (2014) Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. J Sci Food Agric 94:28–44

    Article  CAS  PubMed  Google Scholar 

  22. Ghequire MG, De Canck E, Wattiau P, Van Winge I, Loris R, Coenye T, De Mot R (2013) Antibacterial activity of a lectin-like Burkholderia cenocepacia protein. Microbiologyopen 2:566–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yao GW, Duarte I, Le TT, Carmody L, LiPuma JJ, Young R, Gonzalez CF (2017) A broad-host-range tailocin from Burkholderia cenocepacia. Appl Environ Microbiol 83:e03414–e03416

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  PubMed  Google Scholar 

  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  26. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  PubMed  PubMed Central  Google Scholar 

  27. LiPuma JJ, Spilker T, Coenye T, Gonzalez CF (2002) An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 359:2002–2003

    Article  PubMed  Google Scholar 

  28. Coenye T, Spilker T, Van Schoor A, LiPuma J, Vandamme P (2004) Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe. Thorax 59:952–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR, Waine DJ, LiPuma JJ, Chiarini L, Dalmastri C, Henry DA (2007) Environmental Burkholderia cepacia complex isolates from human infections. Emerg Infect Dis 13:458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coenye T, LiPuma JJ (2003) Population structure analysis of Burkholderia cepacia genomovar III: varying degrees of genetic recombination characterize major clonal complexes. Microbiology 149:77–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FURR, EYTG, and IAH recipients of a fellowship from CONACYT. JAIG and PES are recipient of SNI, EDI, and COFAA fellowships. We thank Dr. E.O. Lopez-Villegas (Escuela Nacional de Ciencias Biológicas, IPN) for the transmission electron microscopic analysis. The genome sequence was conducted by the U.S. Department of Energy, Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Sciences of the U.S. Department of Energy under the proposal 1572 and Contract No. DE-AC02-05CH11231. Phenotypic analysis was partially funded by Projects SIP 20170492 and SIP 20180117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Estrada-de los Santos.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nucleotide Sequence Accession Numbers

The Whole Genome project has been deposited into GenBank under the accession no. PRJEB16032. The version described in this paper is version PRJEB16032.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Rojas, F.U., Sánchez-López, D., Tapia-García, E.Y. et al. Draft Genome of Burkholderia cenocepacia TAtl-371, a Strain from the Burkholderia cepacia Complex Retains Antagonism in Different Carbon and Nitrogen Sources. Curr Microbiol 76, 566–574 (2019). https://doi.org/10.1007/s00284-019-01657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01657-0

Navigation