Skip to main content
Log in

Oxidized Hemp Fibers with Simultaneously Increased Capillarity and Reduced Moisture Sorption as Suitable Textile Material for Advanced Application in Sportswear

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Applications of hemp fibers, as a promising natural material in the textile field, mostly require improved fiber properties. In this paper, the oxidation of hemp fibers with potassium permanganate was applied to reduce the amount of non-cellulosic substances and moisture sorption; to introduce functional groups and increase capillarity; make fibers finer, softer and suitable for application in sport wears. The changes in sorption properties were characterized by capillary rise measurement and the ability of water retention and moisture sorption, while changes in mechanical properties were estimated by determination of tenacity and elongation of modified hemp fibers in comparison to the appropriate characteristic of unmodified fibers. ATR-FTIR, SEM techniques, and zeta potential measurement were used for the characterization of fiber structure, morphological and electrokinetic properties. We obtained a finer fiber with increased capillarity (up to 3.68 times) but reduced moisture sorption (down to 1.5 times) and water retention capacity (down to 2.8 times), with accomplished satisfactory preservation of mechanical properties. Obtained oxidized hemp fibers with attained features present a very suitable material for sportswear production. Additionally, in this paper, an improvement of the capillary rise measurement is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kozlowska, R. Kozlowski, and S. Manys, Current Situation and Future Perspective of Flax and Hemp at the Turn of the 20th and 21th Centuries (Book of Abstract of the Scientific-practical Conference “Flax — on the Threshold of the XXI Century”), 2000.

  2. J. Cruz and R. Fangueiro, Procedia Eng., 155, 285 (2016).

    Article  CAS  Google Scholar 

  3. B. M. Prasad, M. M. Sain, and D. N. Roy, Macromol. Mater. Eng., 289, 581 (2004).

    Article  CAS  Google Scholar 

  4. I. H. Mondal, “Textiles: History, Properties and Performance and Applications”, Nova Science Publishers, Inc., Hauppauge, New York, 2014.

    Google Scholar 

  5. M. Kostic, B. Pejic, and P. Skundric, Bioresour. Technol., 99, 94 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. B. M. Pejic, M. M. Kostic, P. D. Skundric, and J. Z. Praskalo, Bioresour. Technol., 99, 7152 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. S. Kalia, B. S. Kaith, and I. Kaur, Polym. Eng. Sci., 49, 1253 (2009).

    Article  CAS  Google Scholar 

  8. D. Filingeri, B. Redortier, S. Hodder, and G. Havenith, Ski. Res. Technol., 21, 9 (2015).

    Article  CAS  Google Scholar 

  9. M. Raccuglia, S. Hodder, and G. Havenith, Text. Res. J., 87, 2449 (2017).

    Article  CAS  Google Scholar 

  10. K. Parsons, “Human Thermal Environments: The Effects of Hot, Moderate, Andcold Environments on Human Health,Comfort, and Performance”, 3rd ed., CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2014.

    Book  Google Scholar 

  11. D. Grujic and J. Geršak, Text. Res. J., 87, 1522 (2017).

    Article  CAS  Google Scholar 

  12. E. A. DenHartog and C. L. Koerhuis, J. Text. Inst., 108, 664 (2017).

    Article  Google Scholar 

  13. H. M. Wang, R. Postle, R. W. Kessler, and W. Kessler, Text. Res. J., 73, 664 (2003).

    Article  CAS  Google Scholar 

  14. Z. Jinqiu and Z. Jianchun, Text. Res. J., 80, 744 (2010).

    Article  CAS  Google Scholar 

  15. L. Liu, Y. Xiang, R. Zhang, B. Li, and J. Yu, Text. Res. J., 89, 76 (2019).

    Article  CAS  Google Scholar 

  16. J. Milanovic, M. Kostic, P. Milanovic, and P. Skundric, Ind. Eng. Chem. Res., 51, 9750 (2012).

    Article  CAS  Google Scholar 

  17. X. Yeping, Y. Jianyong, L. Liu, Z. Ruiyun, Q. Yongshuai, and J. Miaolei, Text. Res. J., 89, 2433 (2019).

    Article  CAS  Google Scholar 

  18. P. J. Wakelyn, “Cotton Fiber Chemistry and Technology”, 1st ed., CRC Press Taylor & Francis Group, Boca Raton, London, New York, 2006.

    Book  Google Scholar 

  19. M. Lewin, Macromol. Symp., 118, 715 (1997).

    Article  CAS  Google Scholar 

  20. M. S. Sreekala, M. G. Kumaran, and S. Thomas, Compos. Part A-Appl. Sci. Manuf., 33, 763 (2002).

    Article  Google Scholar 

  21. A. Paul, K. Joseph, and S. Thomas, Compos. Sci. Technol., 57, 67 (1997).

    Article  CAS  Google Scholar 

  22. S. Mishra, J. B. Naik, and Y. P. Patil, Compos. Sci. Technol., 60, 1729 (2000).

    Article  CAS  Google Scholar 

  23. M. S. Sreekala, M. G. Kumaran, S. Joseph, M. Jacob, and S. Thomas, Appl. Compos. Mater., 7, 295 (2000).

    Article  CAS  Google Scholar 

  24. M. M. Kostic, J. Z. Milanovic, M. V. Baljak, K. Mihajlovski, and A. D. Kramar, Fiber. Polym., 15, 57 (2014).

    Article  CAS  Google Scholar 

  25. A. I. Koblyakov, “Laboratory Practice in the Study of Textile Materials”, Mir Publ. Moscow, 1989.

    Google Scholar 

  26. Micro Kappa Number, Tappi UM 246, 1991.

  27. V. Kumar and T. Yang, Carbohydr. Polym., 48, 403 (2002).

    Article  CAS  Google Scholar 

  28. E. C. Yackel and W. O. Kenyon, J. Am. Chem. Soc., 64, 121 (1942).

    Article  CAS  Google Scholar 

  29. E. Parks and R. Hebert, Tappi J., 55, 1510 (1972).

    CAS  Google Scholar 

  30. J. Praskalo, M. Kostic, A. Potthast, G. Popov, B. Pejic, and P. Skundric, Carbohydr. Polym., 77, 791 (2009).

    Article  CAS  Google Scholar 

  31. T. Luxbacher, “The Zeta Potential for Solid Surface Analysis”, pp.42–72, 1st ed., Anton Paar GmbH: Graz, Austria, 2014.

    Google Scholar 

  32. ASTM D 2402-07, “Standard Test Method for Water Retention of Fibers (Centrifuge Method)”, 2012.

  33. ASTM D 1776-74, “Conditioning Textiles and Textile Products for Testing”, 1974.

  34. S. Alix, E. Philippe, A. Bessadok, L. Lebrun, C. Morvan, and S. Marais, Bioresour. Technol., 100, 4742 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. I. Bykov, Master thesis, Luleå Univ. Technol, Luleå, 2008.

  36. M.-C. Popescu, C.-M. Popescu, G. Lisa, and Y. Sakata, J. Mol. Struct., 988, 65 (2011).

    Article  CAS  Google Scholar 

  37. T. Kondo, Cellulose, 4, 281 (1997).

    Article  CAS  Google Scholar 

  38. Y. Ge, Z. Li, D. Xiao, P. Xiong, and N. Ye, J. Ind. Eng. Chem., 20, 1765 (2014).

    Article  CAS  Google Scholar 

  39. M. Poletto, H. Ornaghi, and A. Zattera, Materials, 7, 6105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. H. Zhang, R. Ming, G. Yang, Y. Li, Q. Li, and H. Shao, Polym. Eng. Sci., 55, 2553 (2015).

    Article  CAS  Google Scholar 

  41. A. M. Shaker, J. Colloid Interface Sci., 233, 197 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. B. D. Lazić, B. M. Pejić, A. D. Kramar, M. M. Vukčević, K. R. Mihajlovski, J. D. Rusmirović, and M. M. Kostić, Cellulose, 25, 697 (2018).

    Article  CAS  Google Scholar 

  43. F. Tanasă, M. Zănoagă, C. A. Teacă, M. Nechifor, and A. Shahzad, Polym. Compos., 41, 5 (2020).

    Article  CAS  Google Scholar 

  44. V. Hospodarova, E. Singovszka, and N. Stevulova, Am. J. Anal. Chem., 9, 303 (2018).

    Article  CAS  Google Scholar 

  45. E. Terpáková, L. Kidalová, A. Eštoková, J. Čigášová, and N. Števulová, Procedia Eng., 931 (2012).

  46. F. Xu, J. Yu, T. Tesso, F. Dowell, and D. Wang, Appl. Energy, 104, 801 (2013).

    Article  CAS  Google Scholar 

  47. D. Fakin, V. Golob, K. S. Kleinschek, and A. M. le Marechal, Text. Res. J., 76, 448 (2006).

    Article  CAS  Google Scholar 

  48. S. Köstler, V. Ribitsch, K. Stana-Kleinschek, G. Jakopic, and S. Strnad, Colloids Surfaces A-Physicochem. Eng. Asp., 270-271, 107 (2005).

    Article  CAS  Google Scholar 

  49. K. Stana-Kleinschek, S. Strnad, and V. Ribitsch, Polym. Eng. Sci., 39, 1412 (1999).

    Article  CAS  Google Scholar 

  50. K. K. Wong, X. M. Tao, C. W. M. Yuen, and K. W. Yeung, Text. Res. J., 71, 49 (2001).

    Article  CAS  Google Scholar 

  51. T. Kreze, S. Strnad, K. Stana-Kleinschek, and V. Ribitsch, Mater. Res. Innov., 4, 107 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200135). The authors also thank ITES Odzaci (Serbia) for supplying the hemp fibers, and Ph.D. student A. Ivanovska for taking part in measuring of the WRV and MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovana Z. Milanovic.

Supplementary Files for Manuscript

12221_2021_450_MOESM1_ESM.pdf

Oxidized hemp fibers with simultaneously increased capillarity and reduced moisture sorption as suitable textile material for advanced application in sportswear

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milanovic, J.Z., Milosevic, M., Korica, M. et al. Oxidized Hemp Fibers with Simultaneously Increased Capillarity and Reduced Moisture Sorption as Suitable Textile Material for Advanced Application in Sportswear. Fibers Polym 22, 2052–2062 (2021). https://doi.org/10.1007/s12221-021-0450-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0450-y

Keywords

Navigation