Skip to main content

Advertisement

Log in

Analysis of Genetic Variation in Natural Populations of Medicago truncatula of Southern Tunisian Ecological Areas, Using Morphological Traits and SSR Markers

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

We used 19 quantitative traits and 14 microsatellite markers (SSRs) to analyze the genetic variation in four natural populations of the model legume Medicago truncatula sampled in southern Tunisia. The greatest genetic variation of quantitative traits and molecular markers occurred within populations (>71%). In contrast to quantitative population differentiation (Q ST  = 0.09), a high level of molecular differentiation (F ST  = 0.23) was found among populations. The majority of quantitative traits exhibited Q ST values significantly less than F ST values, suggesting that selection may be acting to suppress differentiation for these traits. There was no significant correlation between genetic variation of quantitative traits and molecular markers within populations. On the other hand, significant correlations were found between measured quantitative characters and the site-of-origin environmental factors. The eco-geographical factors with the greatest influence on the variation of measured traits among populations were altitude, followed by soil texture, assimilated phosphorus (P2O5) and organic matter. Nevertheless, there were no consistent patterns of associations between gene diversity (He) and eco-geographical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Badri M, Ilahi H, Huguet T, Aouani ME (2007) Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors. Genet Res 89:107–122

    Article  PubMed  CAS  Google Scholar 

  2. Badri M, Zitoun A, Ilahi H, Huguet T, Aouani ME (2008) Morphological and microsatellite diversity associated with ecological factors in natural populations of Medicago laciniata Mill. (Fabaceae). J Genet 87(3):241–255

    Article  PubMed  CAS  Google Scholar 

  3. Badri M, Zitoun A, Soula S, Ilahi H, Huguet T, Aouani ME (2008) Low levels of quantitative and molecular genetic differentiation among natural populations of Medicago ciliaris Kroch. (Fabaceae) of different Tunisian eco-geographical origin. Conser Genet 9(6):1509–1520

    Article  CAS  Google Scholar 

  4. Barker DG, Bianchi S, London F, Datee Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  5. Barton NH, Whitlock MC (1997) The evolution of metapopulations. pp. 183–210 In: Hanski I, Gilpin M (eds) Metapopulation biology: Ecology, genetics, and evolution. Academic.

  6. Beer SC, Goffreda J, Phillips TD, Murphay JP, Sorrells ME (1993) Assessment of genetic variation in Avena sterilis using morphological traits, isozymes, and RFLPs. Crop Sci 33:1386–1393

    Article  CAS  Google Scholar 

  7. Belkhir K (2001) Genetix software version 4.01, Laboratoire Génome et Populations, Interactions, CNRS UPR 9060, Université de Montpellier II, France

  8. Bena G, Prosperi JM, Lejeune B, Olivieri I (1998) Evolution of annual species of the genus Medicago: a molecular phylogenetic approach. J Mol Evol 9:552–559

    Article  CAS  Google Scholar 

  9. Berlow EL, D’Antonio CM, Reynolds SA (2002) Shrub expansion in montane meadows: the interaction of local-scale disturbance and site aridity. Ecol Appl 12:1103–1118

    Article  Google Scholar 

  10. Bonnin I, Prosperi JM, Olivieri I (1996) Genetic markers and quantitative genetic variation in Medicago truncatula (Leguminosae): a comparative analysis of population structure. Genetics 143:1795–1805

    PubMed  CAS  Google Scholar 

  11. Bonnin I, Prosperi JM, Olivieri I (1997) Comparison of quantitative genetic parameters between two natural populations of a selfing plant species, Medicago truncatula Gaertn. Theor Appl Genet 94:641–651

    Article  Google Scholar 

  12. Bonnin I, Ronfort J, Wozniak F, Olivieri I (2001) Spatial effects and rare outcrossing events in Medicago truncatula (Fabaceae). Mol Ecol 10:1371–1383

    Article  PubMed  CAS  Google Scholar 

  13. Cannon SB, Crow JA, Heuer ML, Wang X, Cannon EKS, Dwan C, Lamblin AF, Vasdewani J, Mudge J, Cook A, Gish J, Cheung F, Kenton S, Kunau TM, Brown D, May GD, Kim D, Cook DR, Roe BA, Town CD et al (2005) Databases and information integration for the Medicago truncatula genome and transcriptome. Plant Physiol 138:38–46

    Article  PubMed  CAS  Google Scholar 

  14. Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Phil Transac Royal Soc B 358:1051–1570

    Article  CAS  Google Scholar 

  15. Crnokrak P, Roff DA (1995) Dominance variance—associations with selection and fitness. Heredity 75:530–540

    Article  Google Scholar 

  16. Cruse-Sanders JM, Hamrick JL (2004) Spatial and genetic structure within populations of wild American ginseng (Panax quinquefolius L., Araliaceae). J Heredity 95(4):309–321

    Article  CAS  Google Scholar 

  17. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  PubMed  CAS  Google Scholar 

  18. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.11: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  19. Gomez-Mestre I, Tejedo M (2004) Contrasting patterns of quantitative and neutral genetic variation in locally adapted populations of the natterjack toad, Bufo calamita. Evolution 58:2343–2352

    PubMed  CAS  Google Scholar 

  20. Goudet J (1995) FSTAT version 1.2: a computer program to calculate F-statistics. J Heredity 86:485–486

    Google Scholar 

  21. Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    Article  PubMed  CAS  Google Scholar 

  22. Huang QY, Beharav A, Youchun UC, Kirzhner V, Nevo E (2002) Mosaic microecological differential stress causes adaptive microsatellite divergence in wild barley, Hordeum spontaneum, at Neve Yaar, Israel. Genome 45:1216–1229

    Article  PubMed  CAS  Google Scholar 

  23. Innan H, Terauchi R, Miyashita NT (1997) Microsatellite polymorphism in natural populations of wild plant Arabidopsis thaliana. Genetics 146:1441–1452

    PubMed  CAS  Google Scholar 

  24. Ivandic V, Hackett CA, Nevo E, Keith R, Thomas WTB, Forster BP (2002) Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48:511–527

    Article  PubMed  CAS  Google Scholar 

  25. Jaramillo-Correa JP, Beaulieu J, Bousquet J (2001) Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Mol Ecol 10:2729–2740

    Article  PubMed  CAS  Google Scholar 

  26. Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9

    Article  PubMed  Google Scholar 

  27. Latta RG (1998) Differentiation of allelic frequencies at quantitative trait loci affecting locally adaptive traits. Amer Nat 151:293–292

    Article  Google Scholar 

  28. Lazrek F, Roussel V, Ronfort J, Cardinet G, Chardon F, Aouani ME, Huguet T (2009) The use of neutral and non-neutral SSRs to analyze the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135:391–402

    Article  PubMed  CAS  Google Scholar 

  29. Leinonen T, O’Hara RB, Cano JM, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17

    PubMed  CAS  Google Scholar 

  30. Lesins KA, Lesins I (1979) Genus Medicago (Leguminosae): A taxogenetic study. The Hague

  31. Li Y, Röder MS, Fahima T, Beiles A, Korol A, Nevo E (2000) Natural selection causing microsatellite divergence in wild emmer wheat at the ecologically variable microsite at Ammiad, Israel. Theor Appl Genet 100:985–999

    Article  Google Scholar 

  32. Li YC, Krugman T, Fahima T, Beiles A, Korol AB, Nevo E (2001) Spatiotemporal allozyme divergence caused by aridity stress in a natural population of wild wheat, Triticum dicoccoides, at the Ammiad microsite, Israel. Theor Appl Genet 102:853–864

    Article  CAS  Google Scholar 

  33. Lopez-Fanjul C, Fernandez A, Toro MA (2003) The effect of neutral nonadditive gene action on the quantitative index of population divergence. Genetics 164:1627–1633

    PubMed  Google Scholar 

  34. McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291

    Article  Google Scholar 

  35. Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  36. Miller JR, Wood BP, Hamilton MB (2008) F ST and Q ST under neutrality. Genetics 180:1023–1037

    Article  PubMed  Google Scholar 

  37. Mitton JB, Duran KL (2004) Genetic variation in pinon pine, Pinus edulis, associated with summer precipitation. Mol Ecol 13:1259–1264

    Article  PubMed  CAS  Google Scholar 

  38. Nei M (1978) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  39. Podolsky RH, Holtsford TP (1995) Population structure of morphological traits in Clarkia dudleyana.I. Comparison of FST between allozymes and morphological traits. Genetics 140:733–744

    PubMed  CAS  Google Scholar 

  40. Pottier-Alapetite G (1979) Flore de la Tunisie, Angiospermes, dicotylédones, Apétales-Dialypétales. Publications scientifiques tunisiennes, Tunis

    Google Scholar 

  41. Pressoir G, Berthaud J (2004) Population structure and strong divergent selection shape phenotypic diversification in maize landraces. Heredity 92:95–101

    Article  PubMed  CAS  Google Scholar 

  42. Prosperi JM, Jenczewski E, Angevain M, Ronfort J (2006) Morphologic and agronomic diversity of wild genetic resources of Medicago sativa L. collected in Spain. Genetic Res Crop Evol 53:843–856

    Article  Google Scholar 

  43. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103

    PubMed  CAS  Google Scholar 

  44. Ronfort J, Bataillon T, Santoni S, Delalande M, David J, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collections for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 2:1

    Google Scholar 

  45. SAS (1998) SAS/STAT User’ Guide, version 70. SAS Institute Inc, Cary

    Google Scholar 

  46. Si Ziani Y (1992) Evaluation de 112 populations de deux espèces de Medicago dans deux zones Agro-écologiques. Engineer Thesis, INA El Harrach

    Google Scholar 

  47. Siol M, Prosperi JM, Bonnin I, Ronfort J (2008) How multilocus genotypic pattern helps to understand the history of selfing populations: a case study in Medicago truncatula. Heredity 100:517–525

    Article  PubMed  CAS  Google Scholar 

  48. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  49. Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374

    PubMed  CAS  Google Scholar 

  50. Stenoien HK, Fenster CB, Tonteri A, Savolainen O (2005) Genetic variability in natural populations of Arabidopsis thaliana in northern Europe. Mol Ecol 14:137–148

    Article  PubMed  CAS  Google Scholar 

  51. Dongens V (1995) How should we bootstrap allozyme data? Heredity 74:445–447

    Article  Google Scholar 

  52. Volis S, Yakubov B, Shulgina I, Ward D, Mendlinger S (2005) Distinguishing adaptive form non adaptive genetic differentiation: comparison of Q ST and F ST at two spatial scales. Heredity 95:466–475

    Article  PubMed  CAS  Google Scholar 

  53. Weir BS (1990) Genetic data analysis. Sinauer Associates Inc., Sunderland

    Google Scholar 

  54. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  55. Whitlock MC (2008) Evolutionary inference from Q ST . Mol Ecol 17:1885–1896

    Article  PubMed  Google Scholar 

  56. Zhan J, Linde CC, Jürgens T, Merz U, Steinebrunner F, McDonald BA (2005) Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Mol Ecol 14:2683–2693

    Article  PubMed  CAS  Google Scholar 

  57. Zribi K, Mhamdi R, Huguet T, Aouani ME (2004) Distribution and genetic diversity of rhizobia nodulating natural populations of Medicago truncatula in Tunisian soils. Soil Biol Biochem 36:903–908

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eric von Wettberg (University of California Davis, USA) for a critical reading of the manuscript, Wael Taamalli (Centre of Biotechnology of Borj Cedria, Tunisia) for his excellent statistical analysis help and both anonymous reviewers for helpful comments. This research was partially supported by Tunisian-French collaborative programs (CMCU 00F0909 and PICS 712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounawer Badri.

Additional information

Communicated by Paul Moore

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arraouadi, S., Badri, M., Jaleel, C.A. et al. Analysis of Genetic Variation in Natural Populations of Medicago truncatula of Southern Tunisian Ecological Areas, Using Morphological Traits and SSR Markers. Tropical Plant Biol. 2, 122–132 (2009). https://doi.org/10.1007/s12042-009-9034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-009-9034-5

Keywords

Navigation