Skip to main content

Advertisement

Log in

A Possible Role of Aspergillus niger Mitochondrial Cytochrome c in Malachite Green Reduction Under Calcium Chloride Stress

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In previous work, decolorization of malachite green (MG) was studied in Aspergillus niger in the presence and absence of calcium chloride stress. Decolorization took place within 24 h, and a signal transduction process that initiated MG decolorization was suggested to be involved. In the present study, further investigation of the relationship between calcium chloride stress and enhanced MG biodegradation was conducted at the sub-cellular level. MG-NADH reductase activity, a key enzyme in MG decolorization, was produced as decolorization commenced, and enzyme activity increased threefold upon exposure to calcium chloride. Inhibitors of cytochrome p450, Ca2+ channel activity as well as activity of the signaling protein phosphoinositide 3-kinase were tested. All three activities were inhibited to different extents resulting in reduced MG decolorization. Spectral analysis of the mitochondrial fraction showed a heme signal at 405 nm and A405/A280 ratio that is characteristic of the porphoryin ring of cytochromes. There were no peaks detected for cytochromes a or b, but a shoulder appearing at 550 nm was observed, which suggested that cytochrome c is involved; the absorbance for cytochrome c doubled after calcium chloride stress supporting this idea. MG decolorization took place via a series of demethylation steps, and cytotoxicity analysis revealed a decrease in the toxicity associated with generation of leucomalachite green.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jaszek, M., Grzywnowicz, K., Malarczyk, E., & Leonowicz, A. (2006). Enhanced extracellular laccase activity as a part of the response system of white rot fungi: Trametes versicolor and Abortiporus biennis to paraquat-caused oxidative stress conditions. Pesticide Biochemistry and Physiology, 85, 147–154.

    Article  CAS  Google Scholar 

  2. Li, Q., McNeil, B., & Harvey, L. M. (2008). Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radical Biology and Medicine, 44, 394–402.

    Article  PubMed  CAS  Google Scholar 

  3. Gomaa, O. (2012). Ethanol induced response in Phanerochaete chrysosporium and its role in the decolorization of triarylmethane dye. Annals of Microbiology, 62, 1403–1409.

    Article  CAS  Google Scholar 

  4. Gomaa, O. M., Selim, N. S., & Linz, J. E. (2012). Biochemical and biophysical response to calcium chloride stress in Aspergillus niger and its role in malachite green degradation. Cell Biochemistry and Biophysics, 65, 413–423. doi:10.1007/s12013-012-9444-0.

    Article  Google Scholar 

  5. Jasinska, A., Rozalska, S., Bernat, P., Paraszkiewicz, K., & Dlugonski, J. (2012). Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. International Biodeterioration and Biodegradation, 73, 33–40.

    Article  CAS  Google Scholar 

  6. Stammati, A., Nebbia, C., De Angelis, I., Albo, A. G., Carletti, M., Rebecchi, C., et al. (2005). Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicology in Vitro, 19, 853–858.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, Y. H., Lee, C., Go, H., Konishi, K., Lee, K., Lau, P. C. K., et al. (2010). Decolorization of malachite green by cytochrome c in mitochondria of the fungus Cunninghamella elegans. Archives of Biochemistry and Biophysics, 494, 159–165.

    Article  PubMed  CAS  Google Scholar 

  8. Ali, H., Ahmad, W., & Haq, T. (2009). Decolorization and degradation of malachite green by Aspergillus flavus and Alternaria solani. African Journal of Biotechnology, 8, 1574–1576.

    CAS  Google Scholar 

  9. Kumar, C. G., Mongolla, P., Joseph, J., & Sarma, V. U. M. (2012). Decolorization and biodegradation of triphenylmethane dye, brilliant green, by Aspergillus sp. Isolated from Ladakh, India. Process Biochemistry, 47, 1388–1394.

    Article  CAS  Google Scholar 

  10. Ui, M., Okada, T., Hazeki, K., & Hazeki, O. (1995). Wortmannin as a unique probe for an intracellular signaling protein, phosphoinositide 3-kinase. TIBS, 20, 303–307.

    PubMed  CAS  Google Scholar 

  11. Yoshida, Y. (1988). Cytochrome p450 of fungi: primary target for azole antifungal agents. Current Topics in Medical Mycology, 2, 388–418.

    Article  PubMed  CAS  Google Scholar 

  12. Huang, P., Hawthome, W. J., Peng, A., Angeli, G. L., Medbury, H. J., & Fletcher, J. P. (2001). Calcium channel antagonist verapamil inhibits neointimal formation and enhances apoptosis in a vascular graft model. The American Journal of Surgery, 181, 492–498.

    Article  CAS  Google Scholar 

  13. Moturi, B., & Singara Charya, M. A. (2010). Triphenyl methane reductase enzyme assay and PCR-based detection of tmr gene in Mucor mucedo. World Applied Science Journal, 10, 462–465.

    Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with phenol-folin reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  15. Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119, 203–210.

    Article  PubMed  CAS  Google Scholar 

  16. Jadhav, J. P., & Govindwar, S. P. (2006). Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast, 23, 315–323.

    Article  PubMed  CAS  Google Scholar 

  17. Jang, M. S., Lee, Y. M., Kim, C. H., Lee, J. H., Kang, D. W., Kim, S. J., et al. (2005). Triphenylmethane reductase from Citrobacter sp. strain KCTC18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Applied and Environmental Microbiology, 71, 7955–7960.

    Article  PubMed  CAS  Google Scholar 

  18. Silverman-Gavrila, L. B., & Lew, R. R. (2002). An IP3-activated Ca+2 channel regulates fungal tip growth. Journal of Cell Science, 115, 5013–5025.

    Article  PubMed  CAS  Google Scholar 

  19. Xiao, X., Xu, C. C., Wu, Y. M., Cai, P. J., Li, W. W., Du, D. L., et al. (2012). Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresource Technology, 110, 86–90.

    Article  PubMed  CAS  Google Scholar 

  20. Kolekar, Y. M., Nemade, H. N., Markad, V. L., Adav, S. S., Patole, M. S., & Kodam, K. M. (2012). Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules. Bioresource Technology, 104, 818–822.

    Article  PubMed  CAS  Google Scholar 

  21. Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., & Orrenius, S. (2002). Cytochrome c release from mitochondria proceeds by a two-step process. PNAS, 99, 1259–1263.

    Article  PubMed  CAS  Google Scholar 

  22. Cha, C. J., Doerge, D. R., & Cerniglia, C. E. (2001). Biotransformation of malachite green by the fungus Cunninghamella elegans. Applied and Environmental Microbiology, 67, 4358–4360.

    Article  PubMed  CAS  Google Scholar 

  23. Murugesan, K., Yang, I. H., Kim, Y. M., Jeon, J. R., & Chang, Y. S. (2009). Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Applied Microbiology and Biotechnology, 82, 341–350.

    Article  PubMed  CAS  Google Scholar 

  24. Parshetti, G., Kalme, S., Saratale, G., & Govindwar, S. (2006). Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chimica Slovica, 53, 492–498.

    CAS  Google Scholar 

  25. Fogh, J., Wright, W. C., & Loveless, J. D. (1977). Absence of HeLa cell contamination in 169 cell lines derived from human tumors. Journal of National Cancer Institute, 58, 209–214.

    CAS  Google Scholar 

  26. De Angelis, I., Hoogenboom, L. A. P., Huveneers-Oorsprong, M. B. M., Zucco, F., & Stammati, A. (1994). Established cell lines for safety assessment of food contaminants: Differing furazolidone toxicity to V79, HEp-2 and Caco-2 cells. Food and Chemical Toxicology, 32, 481–488.

    Article  PubMed  Google Scholar 

  27. Gomaa, O., Abdel El Kareem, H., & Fathey, R. (2012). Assessment of the efficacy of Aspergillus sp. EL-2 in textile waste water treatment. Biodegradation, 23, 243–251.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by US–Egypt joint Grant, Project ID: 750, Science and Technology Development Fund (STDF), Cairo, Egypt. The authors would also like to thank the Cancer Research Laboratory at the road to Nobel, National Research Center, Cairo, Egypt, for providing their laboratory facilities for the cytotoxicity tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola M. Gomaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomaa, O.M., Selim, N.S. & Linz, J.E. A Possible Role of Aspergillus niger Mitochondrial Cytochrome c in Malachite Green Reduction Under Calcium Chloride Stress. Cell Biochem Biophys 67, 1291–1299 (2013). https://doi.org/10.1007/s12013-013-9661-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9661-1

Keywords

Navigation