Skip to main content

Cytochrome P450 of Fungi: Primary Target for Azole Antifungal Agents

  • Chapter
Current Topics in Medical Mycology

Part of the book series: Current Topics in Medical Mycology ((CT MYCOLOGY,volume 2))

Abstract

Numerous azole compounds have been developed as potent antifungal agents. These compounds inhibit the growth of fungi by disturbing membrane and membrane-bound enzyme systems. Such disturbance is caused by the depletion of ergosterol and the accumulation of 14-methylsterols such as lanosterol, 24-methylene-24,25-dihydrolanosterol, obtusifoliol, and 14-methylfecosterol in the membrane. Ergosterol is synthesized from lanosterol with the 14-methylsterols appearing as intermediates in the metabolic pathway. The azole antifungal agents inhibit the 14a-demethylation of methylsterols. The 14a-demethylation is a cytochrome P450-dependent reaction, and the cytochrome P450 that catalyzes removal of the 14a-methyl group of 14-methylsterols is believed to be the primary target for azole antifungal agents [for a review, see (101)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar M, Watkinson IA, Rahimtula AD, Wilton DC, Munday KA: The role of a cholesta-8, 14-dien-3β-ol system in cholesterol biosynthesis. Biochem J 111 : 757–761, 1969.

    PubMed  CAS  Google Scholar 

  2. Akhtar M, Freeman CW, Wilton DC, Boar RB, Copsey DB: The pathway for the removal of the 14a-methyl group of lanosterol. The role of lanost-8-ene-3/?,32-diol in cholesterol biosynthesis. Bioorg Chem 6:473–481, 1977.

    CAS  Google Scholar 

  3. Akhtar M, Alexander K, Boar RB, McGhie JF, Barton DHR: Chemical and enzymatic studies on the characterization of intermediates during the removal of the 14a-methyl group in cholesterol biosynthesis. The use of 32-functionalized lanosterol derivatives. Biochem J 169:449–463, 1978.

    PubMed  CAS  Google Scholar 

  4. Alexander K, Akhtar M, Boar RB, McGhie JF, Barton DHR: The removal of the 32-carbon atom as formic acid in cholesterol biosynthesis. J Chem Soc Chem Commun 1972:383–385, 1972.

    Google Scholar 

  5. Aoyama Y, Yoshida Y, Kubota S, Kumaoka H, Furumichi A: NADPHcytochrome P450 reductase of yeast microsomes. Arch Biochem Biophys 185: 362–369, 1978.

    PubMed  CAS  Google Scholar 

  6. Aoyama Y, Yoshida Y: The 14a-demethylation of lanosterol by a reconstituted cytochrome P450 system from yeast microsomes. Biochem Biophys Res Commun 85:28–34, 1978.

    PubMed  CAS  Google Scholar 

  7. Aoyama Y, Yoshida Y: Interaction of lanosterol to cytochrome P450 purified from yeast microsomes: Evidence for contribution of cytochrome P450 to lanosterol metabolism. Biochem Biophys Res Commun 82:33–38, 1978.

    PubMed  CAS  Google Scholar 

  8. Aoyama Y, Okikawa T, Yoshida Y: Evidence for the presence of cytochrome P450 functional in lanosterol demethylation in microsomes of aerobically grown respiring yeast. Biochim Biophys Ada 665:596–601, 1981.

    CAS  Google Scholar 

  9. Aoyama Y, Yoshida Y, Sato R, Susani M, Ruis H: Involvement of cytochrome b5 and a cyanide-sensitive monooxygenase in the 4-demethylation of 4,4-dimethylzymosterol by yeast microsomes. Biochim Biophys Ada 663:194–202, 1981.

    CAS  Google Scholar 

  10. Aoyama Y, Yoshida Y, Hata S, Nishino T, Katsuki H, Maitra US, Mohan VP, Sprinson DB: Altered cytochrome P450 in a yeast mutant blocked in demethylating C-32 of lanosterol. J Biol Chem 258:9040–9042, 1983.

    PubMed  CAS  Google Scholar 

  11. Aoyama Y, Yoshida Y, Hata S, Nishino T, Katsuki H: Buthiobate: A potent inhibitor for yeast cytochrome P450 catalyzing 14a-demethylation of lanosterol. Biochem Biophys Res Commun 115:642–647, 1983.

    PubMed  CAS  Google Scholar 

  12. Aoyama Y, Yoshida Y, Sato R: Yeast cytochrome P450 catalyzing lanosterol 14a-demethylation. II. Lanosterol metabolism by purified P45014DM and by intact microsomes. J Biol Chem 259:1661–1666, 1984.

    PubMed  CAS  Google Scholar 

  13. Aoyama Y, Yoshida Y, Sonoda Y, Sato Y: Metabolism of 32-hydroxy-24,25-dihydrolanosterol by purified cytochrome P45014DM from yeast. Evidence for contribution of the cytochrome to whole-process of lanosterol 14ademethylation. J Biol Chem 262:1239–1243, 1987.

    PubMed  CAS  Google Scholar 

  14. Azari MR, Wiseman A: Purification and characterization of the cytochrome P448 component of a benzo[a]pyrene hydroxylase from Saccharomyces cerevisiae. Anal Biochem 122:129–138, 1982.

    PubMed  CAS  Google Scholar 

  15. Bach SJ, Dixon M, Keilin D: A new soluble cytochrome component from yeast. Nature 149:21, 1942.

    CAS  Google Scholar 

  16. Baldwin BC, Wiggins TE: Action of fungicidal triazoles of the dichlobutrazol series on Ustilago maydis. Pesticide Sci 15:156–166, 1984.

    CAS  Google Scholar 

  17. Bertrand JC, Gilewicz M, Bazin H, Zacek M, Azoulay E: Partial purification of cytochrome P450 of Candida tropicalis and reconstitution of hydroxylase activity. FEBS Lett 105:143–145, 1979.

    PubMed  CAS  Google Scholar 

  18. Bosterling B, Trudell JR: Association of cytochrome b5 and cytochrome P450 reductase with cytochrome P450 in the membrane of reconstituted vesicles. J Biol Chem 257:4783–4787, 1982.

    PubMed  CAS  Google Scholar 

  19. Breskvar K, Hudnik-Plevnik T: A possible role of cytochrome P450 in hydroxylation of progesterone by Rhizopus nigricans. Biochem Biophys Res Commun 74:1192–1198, 1977.

    PubMed  CAS  Google Scholar 

  20. Cerniglia CE, Gibson DT: Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans. J Biol Chem 254:12174–12180, 1979.

    PubMed  CAS  Google Scholar 

  21. Cerniglia CE, Gibson DT: Fungal oxidation of benzo[a]pyrene and (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Evidence for the formation of a benzo[a]pyrene-7,8-diol-9,10-epoxide. J Biol Chem 255:5159–5163, 1980.

    PubMed  CAS  Google Scholar 

  22. Dawson JH, Andersson LA, Sono M: Spectroscopic investigation of ferric cytochrome P450-CAM ligand complexes. Identification of the ligand trans to cysteinate in the native enzyme. J Biol Chem 257:3606–3617, 1982.

    PubMed  CAS  Google Scholar 

  23. Dawson JH, Andersson LA, Sono M: The diverse Spectroscopic properties of ferrous cytochrome P450-CAM ligand complexes. J Biol Chem 258:13637–13645, 1983.

    PubMed  CAS  Google Scholar 

  24. Duppel W, Lebeault JM, Coon MJ: Properties of a yeast cytochrome P450-containing enzyme system which catalyzes the hydroxylation of fatty acids, alkanes, and drugs. Eur J Biochem 36:583–592, 1973.

    PubMed  CAS  Google Scholar 

  25. Dutta D, Ghosh DK, Mishra AK, Samanta TB: Induction of benzo[a]pyrene hydroxylase in Aspergillus ochraceus TS. Evidences of multiple forms of cytochrome P450. Biochem Biophys Res Commun 115:692–699, 1983.

    PubMed  CAS  Google Scholar 

  26. Ephrussi B, Slonimski PP: Effect of oxygen on the formation of respiratory enzymes in baker’s yeast. Compt Rend 230:685–686, 1950.

    CAS  Google Scholar 

  27. Ephrussi B, Slonimski PP, Perrodin G: The adaptive synthesis of cytochromes in baker’s yeast. Biochim Biophys Ada 6:256–267, 1950.

    CAS  Google Scholar 

  28. Ferris JP, MacDonald LH, Patrie MA, Martin MA: Aryl hydrocarbon hydroxylase activity in the fungus Cunninghamella bainieri. Evidence for the presence of cytochrome P450. Arch Biochem Biophys 175:443–452, 1976.

    PubMed  CAS  Google Scholar 

  29. Fink H: Classification of culture yeasts with the aid of the cytochrome spectrum. Hoppe-Seyler’s Z Physiol Chem 210:197–219, 1932.

    CAS  Google Scholar 

  30. Fujii-Kuriyama Y, Mizukami Y, Kawajiri K, Sogawa K, Muramatsu M: Primary structure of a cytochrome P450: Coding nucleotide sequence of phenobarbitalinducible cytochrome P450 cDNA from rat liver. Proc Natl Acad Sci USA 79:2793–2797, 1982.

    PubMed  CAS  Google Scholar 

  31. Fujita VS, Black SD, Tarr GE, Koop DR, Coon MJ: On the amino acid sequence of cytochrome P450 isozyme 4 from rabbit liver microsomes. Proc Natl Acad Sci USA 81:4260–4264, 1984.

    PubMed  CAS  Google Scholar 

  32. Gallo M, Bertrand JC, Azoulay E: Participation du cytochrome P450 dans 1’oxydation des alcones chez Candida tropicalis. FEES Lett 19:45–49, 1971.

    CAS  Google Scholar 

  33. Ghosh DK, Dutta D, Samanta TB, Mishra AK: Microsomal benzo[a]pyrene hydroxylase in Aspergillus ochraceus TS. Assay and characterization of the enzyme system. Biochem Biophys Res Commun 113:497–505, 1983.

    PubMed  CAS  Google Scholar 

  34. Gonzalez FJ, Nebert DW, Hardwick JP, Kasper CB: Complete cDNA and protein sequence of a pregnenolone 16a-carbonitrile-induced cytochrome P450. A representative of a new gene family. J Biol Chem 260:7435–7441, 1985.

    PubMed  CAS  Google Scholar 

  35. Griffin BW, Peterson JA: Pseudomonas putida cytochrome P450. The effect of complexes of the ferric hemoprotein on the relaxation of solvent water protons. J Biol Chem 250:6445–6451, 1975.

    PubMed  CAS  Google Scholar 

  36. Haniu M, Armes LG, Yasunobu KT, Shastry BA, Gunsalus IC: Amino acid sequence of the Pseudomonas putida cytochrome P450. II. Cyanogen bromide peptides, acid cleavage peptides, and the complete sequence. J Biol Chem 257: 12664–12671, 1982.

    PubMed  CAS  Google Scholar 

  37. Hata S, Nishino T, Komori M, Katsuki H: Involvement of cytochrome P450 in A22-desaturation in ergosterol biosynthesis of yeast. Biochem Biophys Res Commun 103:272–277, 1981.

    PubMed  CAS  Google Scholar 

  38. Hata S, Nishino T, Katsuki H, Aoyama Y, Yoshida Y: Two species of cytochrome P450 involved in ergosterol biosynthesis of yeast. Biochem Biophys Res Commun 116:162–166, 1983.

    PubMed  CAS  Google Scholar 

  39. Hatefi Y, Stiggall DL: Metal-containing flavoprotein dehydrogenases, In Boyer PD (ed): The Enzymes, Vol. VIII, (3rd ed). New York, Academic Press, 1976, 263–269.

    Google Scholar 

  40. Heinemann FS, Ozols J: The complete amino acid sequence of rabbit phenobarbital-induced liver microsomal cytochrome P450. J Biol Chem 258: 4195–4201, 1983.

    PubMed  CAS  Google Scholar 

  41. Henry MJ, Sisler HD: Effects of miconazole and dodecylimidazole on sterol biosynthesis in Ustilago maydis. Antimicrob Agents Chemother 15:603–607, 1979.

    PubMed  CAS  Google Scholar 

  42. Imai Y, Sato R: Substrate interaction with hydroxylase system in liver microsomes. Biochem Biophys Res Commun 22:620–626, 1966.

    PubMed  CAS  Google Scholar 

  43. Imai Y, Sato R: Conversion of P450 to P420 by neutral salts and some other reagents. Eur J Biochem 1:419–426, 1967.

    PubMed  CAS  Google Scholar 

  44. Imai Y, Sato R: The role of cytochrome bs in a reconstituted N-demethylase system containing cytochrome P450. Biochem Biophys Res Commun 75:420–426, 1977.

    PubMed  CAS  Google Scholar 

  45. Ishidate K, Kawaguchi K, Tagawa K: Change in P450 content accompanying aerobic formation of mitochondria in yeast. J Biochem 65:385–392, 1969.

    PubMed  CAS  Google Scholar 

  46. Ishidate K, Kawaguchi K, Tagawa K, Hagihara B: Hemoproteins in anaerobically grown yast cells. J Biochem 65:375–383, 1969.

    PubMed  CAS  Google Scholar 

  47. Jayanthi CR, Madyastha P, Madyastha KM: Microsomal 1 la-hydroxylation of progesterone in Aspergillus ochraceus. I. Characterization of the hydroxylase system. Biochem Biophys Res Commun 106:1262–1268, 1982.

    PubMed  CAS  Google Scholar 

  48. Jefcoate CRE, Gaylor JL, Calabrese RL: Ligand interactions with cytochrome P450.1. Binding of primary amines. Biochemistry 8:3455–3463, 1969.

    CAS  Google Scholar 

  49. Kato T, Kawase Y: Selective inhibition of the demethylation at C-14 in ergosterol biosynthesis by the fungicide Denmert® (S-1358). Agr Biol Chem 40:2379–2388, 1976.

    CAS  Google Scholar 

  50. Kawajiri K, Gotoh O, Sogawa K, Tagashira Y, Muramatsu M, Fujii-Kuriyama Y: Coding nucleotide sequence of 3-methylcholanthreneinducible cytochrome P450d cDNA from rat liver. Proc Nat Acad Sci USA 81:1649–1653, 1984.

    PubMed  CAS  Google Scholar 

  51. Keilin D: Cytochrome, a respiratory pigment, common to animals, yeast and higher plants. Proc Roy Soc B98:312–339, 1925.

    Google Scholar 

  52. King DJ, Azari MR, Wiseman A: The induction of cytochrome P448 dependent benzo[a]pyrene hydroxylase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 105:1115–1121, 1982.

    PubMed  CAS  Google Scholar 

  53. King DJ, Azari MR, Wiseman A: Studies on the properties of highly purified cytochrome P448 and its dependent activity benzo[a]pyrene hydroxylase, from Saccharomyces cerevisiae. Xenobiotica 14:187–206, 1984.

    PubMed  CAS  Google Scholar 

  54. Korenlampi SO, Marin E, Hanninen OP: Effect of carbon source on the accumulation of cytochrome P450 in the yeast Saccharomyces cerevisiae. Biochem J 194:407–413, 1981.

    Google Scholar 

  55. Kubota S, Yoshida Y, Kumaoka H: Studies on the microsomal electron-transport system of anaerobically grown yeast. IV. Purification and characterization of NADH-cytochrome b5 reductase. J Biochem 81:187–195, 1977.

    PubMed  CAS  Google Scholar 

  56. Kubota S, Yoshida Y, Kumaoka H, Furumichi A: Studies on the microsomal electron-transport system of anaerobically grown yeast. V. Purification and characterization of NADPH-cytochrome c reductase. J Biochem 81:197–205, 1977.

    PubMed  CAS  Google Scholar 

  57. Lebeault JM, Lode ET, Coon MJ: Fatty acid and hydrocarbon hydroxylation in yeast: Role of cytochrome P450 in Candida tropicalis. Biochem Biophys Res Commun 42:4\3–4\9, 1971.

    Google Scholar 

  58. Lindenmayer A, Estabrook RW: Low-temperature spectral studies on the biosynthesis of cytochromes in baker’s yeast. Arch Biochem Biophys 78:66–82,1958.

    PubMed  CAS  Google Scholar 

  59. Lindenmayer A, Smith L: Cytochromes and other pigments of baker’s yeast grown aerobically and anaerobically. Biochim Biophys Acta 93:445–461, 1964.

    PubMed  CAS  Google Scholar 

  60. Lu AYH, West SB: Multiplicity of mammarian microsomal cytochromes P450. Pharmacol Rev 31:277–295. 1980.

    Google Scholar 

  61. Marchington AF: Role of computergraphics in the design of plant protection chemicals, in Proc 10th International Congress on Plant Protection, 1983, 201–208.

    Google Scholar 

  62. Marichal P, Gorrens J, Vanden Bossche H: The action of itraconazole and ketoconazole on growth and sterol synthesis in Aspergillus fumigatus and Aspergillus niger. J Med Vet My col 22:13–21, 1984.

    Google Scholar 

  63. Matthews DE, Van Etten HD: Detoxification of the phytoalexin pisatin by a fungal cytochrome P450. Arch Biochem Biophys 224:494–505, 1983.

    PubMed  CAS  Google Scholar 

  64. Mauersberger S, Matyashova RN, Miiller HG, Losinov AB: Influence of the growth substrate and the oxygen concentration in the medium on the cytochrome P450 content in Candida guilliermondii. Eur J Appl Microbiol Biotechnol 9:285–294, 1980.

    CAS  Google Scholar 

  65. Mitropoulos KA, Gibbons GF, Reeves BEA: Lanosterol 14a-demethylase. Similarity of the enzyme system from yeast and rat liver. Steroids 27:821–829, 1976.

    PubMed  CAS  Google Scholar 

  66. Morohashi K, Fujii-Kuriyama Y, Okada Y, Sogawa K, Hirose T, Inayama S, Omura T: Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P450(SCC) of bovine adrenal cortex. Proc Natl Acad Sci USA 81:4647–4651, 1984.

    PubMed  CAS  Google Scholar 

  67. Miiller HG, Schunck WH, Riege P, Honeck H: The alkane-hydroxylating enzyme system of the yeast Candida guilliermondii. Acta Biol Med Germ 38:345–349, 1979.

    Google Scholar 

  68. Miiller HG, Schunck WH, Riege P, Honeck H: Cytochrome P450 of microorganisms, In Ruckpaul K, ReIn H (eds): Cytochrome P450. Berlin, Akademie-Verlag, 1984, 337–369.

    Google Scholar 

  69. Murphy G, Vogel G, Krippahl G, Lynen F: Patulin biosynthesis: The role of mixed-function oxidases in the hydroxylation of w-cresol. Eur J Biochem 49: 443–455, 1974.

    PubMed  CAS  Google Scholar 

  70. Ohba M, Sato R, Yoshida Y, Nishino T, Katsuki H: Involvement of Cytochrome P450 and a cyanide-sensitive enzyme in different steps of lanosterol demethylation by yeast microsomes. Biochem Biophys Res Commun 85:21–27, 1978.

    PubMed  CAS  Google Scholar 

  71. Ohnishi T, Kawaguchi K, Hagihara B: Preparation and some properties of yeast mitochondria. J Biol Chem 241:1797–1806, 1966.

    PubMed  CAS  Google Scholar 

  72. Ohnishi T, Sottocasa G, Ernster L: Current approaches to the mechanism of energy-coupling in the respiratory chain. Studies with yeast mitochondria. Bull Soc Chim Biol 48:1189–1203, 1966.

    PubMed  CAS  Google Scholar 

  73. Okayasu T, Nagao M, Ishibashi T, Imai Y: Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes. Arch Biochem Biophys 206:21–28, 1981.

    PubMed  CAS  Google Scholar 

  74. Omura T, Sato R: The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378, 1964.

    PubMed  CAS  Google Scholar 

  75. Omura T, Sato R: The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties, J Biol Chem 239:2379–2385, 1964.

    PubMed  CAS  Google Scholar 

  76. Omura T : Introduction: Short history of Cytochrome P450, In Sato, R, Omura T (eds): Cytochrome P450. Tokyo, Kodansha, and New York, Academic Press, 1978, 1–21.

    Google Scholar 

  77. Ono T, Takahashi K, Odani S, Konno H, Imai Y: Purification of squalene epoxidase from rat liver microsomes. Biochem Biophys Res Commun 96:522–528, 1980.

    PubMed  CAS  Google Scholar 

  78. Osumi T, Nishino T, Katsuki H: Studies on the A5-desaturation in ergosterol biosynthesis in yeast. J Biochem 85:819–826, 1979.

    PubMed  CAS  Google Scholar 

  79. Ragsdale, NN: Specific effects of triarimol on sterol biosynthesis in Ustilago maydis. Biochim Biophys Acta 380:81–96, 1975.

    PubMed  CAS  Google Scholar 

  80. Riege P, Schunck WH, Honeck H, Muller HG: Cytochrome P450 from Lodderomyces elongisporus: Its purification and some properties of the highly purified protein. Biochem Biophys Res Commun 98:527–534, 1981.

    PubMed  CAS  Google Scholar 

  81. Ryder NS, Dupont MC: Properties of a particulate squalene epoxidase from Candida albicans. Biochim Biophys Acta 794:466–471, 1984.

    PubMed  CAS  Google Scholar 

  82. Ryder NS, Dupont MC: Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem J 230:765–770, 1985.

    PubMed  CAS  Google Scholar 

  83. Sanglard D, Kappeli O, Fiechter A: Metabolic conditions determining the composition and catalytic activity of cytochrome P450 monooxygenases in Candida tropicalis. J Bacteriol 157:297–302, 1984.

    PubMed  CAS  Google Scholar 

  84. Sato R: Distribution and physiological functions, In Sato R, Omura T (eds): Cytochrome P450. Tokyo, Kodansha, and New York, Academic Press, 1978, 23-35.

    Google Scholar 

  85. Schenkman JB, Remmer H, Estabrook RW: Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol Pharmacol 3:113–123, 1967.

    CAS  Google Scholar 

  86. Shafiee A, Trzaskos JM, Paik YK, Gaylor JL: Oxidative demethylation of lanosterol in cholesterol biosynthesis: Accumulation of sterol intermediates. LipidRes 27:1–10, 1986.

    CAS  Google Scholar 

  87. Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R: Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci USA 71:4565–4569, 1974.

    PubMed  CAS  Google Scholar 

  88. Tagawa K: Induction and disappearance of cytochrome P450 in yeast cells, In Sato R, Omura T (eds): Cytochrome P450. Tokyo, Kodansha, and New York, Academic Press, 1978, 202-208.

    Google Scholar 

  89. Tai HH, Bloch K: Squalene epoxidase of rat liver. J Biol Chem 247:3767–3773, 1972.

    PubMed  CAS  Google Scholar 

  90. Takagi M, Moriya K, Yano K: Induction of cytochrome P450 in petroleumassimilating yeast. I. Selection of a strain and basic characterization of cytochrome P450 induction in the strain. Cell Mol Biol 25:363–369, 1980.

    Google Scholar 

  91. Takagi M, Moriya K, Yano K: Induction of cytochrome P450 in petroleumassimilating yeast. II. Comparison of protein synthesizing activity in the cells grown on glucose and n-tetradecane. Cell Mol Biol 25:371–375, 1980.

    Google Scholar 

  92. Takano H, Oguri Y, Kato T : Mode of action of (E)-l-(2,4-dichlorophenyl)-4,4-dimethyl-2-(l,2,4-triazol-l-yl)-l-penten-3-ol (S-3308) in Ustilago maydis. J Pestic Sci 8:575–582, 1983.

    CAS  Google Scholar 

  93. Tamura Y, Yoshida Y, Sato R, Kumaoka H: Fatty acid desaturase system of yeast microsomes. Involvement of cytochrome b5-containing electron-transport chain. Arch Biochem Biophys 175:284–294, 1976.

    PubMed  CAS  Google Scholar 

  94. Trocha PJ, Jasne SJ, Sprinson DB: Novel sterols in ergosterol deficient yeast mutants. Biochem Biophys Res Commun 59:666–671, 1974.

    PubMed  CAS  Google Scholar 

  95. Trocha PJ, Jasne SJ, Sprinson DB: Yeast mutants blocked in removing the methyl group of lanosterol at C-14. Separation of sterols by high-pressure liquid chromatography. Biochemistry 16:4721–4726, 1977.

    PubMed  CAS  Google Scholar 

  96. Trzaskos JM, Bowen WD, Shafiee A, Fischer T, Gaylor JL: Cytochrome P450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation. J Biol Chem 259:13402–13412,1984.

    PubMed  CAS  Google Scholar 

  97. Trzaskos JM, Kawata S, Gaylor JL: Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14a-methyl demethylase cytochrome P450 from hepatic microsomes. J Biol Chem 261:14651–14657, 1986.

    PubMed  CAS  Google Scholar 

  98. Vanden Bossche H, Ruysschaert JM, Defrise-Quertain F, Willemsens G, Marichal CE, Cools W, Van Cutsem J: The interaction of miconazole and ketoconazole with lipids. Biochem Pharmacol 31:2609–2617, 1982.

    PubMed  Google Scholar 

  99. Vanden Bossche H, Lauwers W, Willemsens G, Marichal P, Cornelissen F, Cools W: Molecular bases for the antimycotic and antibacterial activity of Nsubstituted imidazoles and triazoles: The inhibition of isoprenoid biosynthesis. Pesticide Sci 15:188–198, 1984.

    Google Scholar 

  100. Vanden Bossche H, Willemsens G, Marichal P, Cools W, Lauwers W: The molecular basis for the antifungal activities of N-substituted azole derivatives. Focus on R51 211, In Trinci APJ, Ryley JF (eds): The Symposium of British Mycological Society, Mode of Action of Antifungal Agents. Cambridge, Cambridge University Press, 1984, 321–341.

    Google Scholar 

  101. Vanden Bossche H: Biochemical target for antifungal azole derivatives: Hypothesis on the mode of action, In McGinnis MR (ed): Current Topics in Medical Mycology, Vol. 1. New York, Springer-Verlag, 1985, 313–351.

    Google Scholar 

  102. Watkinson I A, Akhtar M: The formation of an 8,14-diene system during cholesterol biosynthesis. J Chem Soc Chem Commun 1969:206, 1969.

    Google Scholar 

  103. White RE, Coon MJ: Oxygen activation by cytochrome P450. Ann Rev Biochem 49:315–356, 1980.

    PubMed  CAS  Google Scholar 

  104. White RE, Coon MJ: Heme ligand replacement reactions of cytochrome P450. Characterization of the bonding atom of the axial ligand trans to thiolate as oxygen. J Biol Chem 257:3073–3083, 1982.

    PubMed  CAS  Google Scholar 

  105. Wiseman A, Woods LFJ: Regulation of the biosynthesis of cytochrome P450 in baker’s yeast. Role of cyclic AMP. Biochim Biophys Acta 544:615–623, 1978.

    PubMed  CAS  Google Scholar 

  106. Woods LFJ, Wiseman A; Benzo[a]pyrene hydroxylase from Saccharomyces cerevisiae. Substrate binding, spectral and kinetic data. Biochim Biophys Acta 613:52–61, 1980.

    PubMed  CAS  Google Scholar 

  107. Yabusaki Y, Shimizu M, Murakami H, Nakamura K, Oeda K, Ohkawa H: Nucleotide sequence of a full-length cDNA coding for 3-methylchoranthreneinduced rat liver cytochrome P450MC. Nucleic Acid Res 12:2929–2938, 1984.

    PubMed  CAS  Google Scholar 

  108. Yonetani T: Cytochrome c peroxidase, In Boyer PB (ed): The Enzymes (3rd ed) Vol. VIII. New York, Academic Press, 1976, 345–361.

    Google Scholar 

  109. Yoshida Y, Kumaoka H, Sato R: Studies on the microsomal electron-transport system of anaerobically grown yeast. I. Intracellular localization and characterization. J Biochem 75:1201–1210, 1974.

    PubMed  CAS  Google Scholar 

  110. Yoshida Y, Kumaoka H, Sato R: Studies on the microsomal electron-transport system of anaerobically grown yeast. II. Purification and characterization of cytochrome b5 . J Biochem 75:1211–1219, 1974.

    PubMed  CAS  Google Scholar 

  111. Yoshida Y, Kumaoka H: Studies on the microsomal electron-transport system of anaerobically grown yeast. III. Spectral characterization of cytochrome P450. Biochem 78:785–794, 1975.

    CAS  Google Scholar 

  112. Yoshida Y, Kumaoka H: Studies on the substrate-induced spectral change of cytochrome P450 in liver microsomes. J Biochem 78:455–468, 1975.

    CAS  Google Scholar 

  113. Yoshida Y, Aoyama Y, Kumaoka H, Kubota S: A highly purified preparation of cytochrome P450 from microsomes of anaerobically grown yeast. Biochem Biophys Res Commun 78:1005–1010, 1977.

    PubMed  CAS  Google Scholar 

  114. Yoshida Y, Imai Y, Hashimoto-Yutsudo C: Spectrophotometric examination of exogenous-ligand complexes of ferric cytochrome P450. Characterization of the axial ligand trans to thiolate in the native ferric low-spin form. J Biochem 91:1651–1659, 1982.

    PubMed  CAS  Google Scholar 

  115. Yoshida Y, Tamura-Higashimaki Y, Sato R: Purification and characterization of intact cytochrome b5 from yeast microsomes. Arch Biochem Biophys 220:467–476, 1983.

    PubMed  CAS  Google Scholar 

  116. Yoshida Y, Aoyama Y: Yeast cytochrome P450 catalyzing lanosterol 14ademethylation. I. Purification and spectral properties. J Biol Chem 259:1655–1660, 1984.

    PubMed  CAS  Google Scholar 

  117. Yoshida Y: Physicochemical properties of multiple forms of cytochrome P450: A proposal for the ligand structure, In Tagashira Y, Omura T (eds):P450 and Chemical Carcinogenesis. GANN Monograph in Cancer Research, Vol. 30. Tokyo, Japan Scientific Societies Press, and New York, Plenum Press, 1985, 3–18.

    Google Scholar 

  118. Yoshida Y, Aoyama Y, Nishino T, Katsuki H, Maitra US, Mohan VP, Sprinson DB: Spectral properties of a novel cytochrome P450 of a Saccharomyces cerevisiae mutant SGI.A cytochrome P450 species having a nitrogenous ligand trans to thiolate. Biochem Biophys Res Commun 127:623–628, 1985.

    PubMed  CAS  Google Scholar 

  119. Yoshida Y, Aoyama Y, Nishino T, Katsuki H, Maitra US, Mohan VP, Sprinson DB: Characterization of an altered cytochrome P450 from a mutant yeast, Vereczkey L Magyar K : Cytochrome P450, Biochemistry, Biophysics, and Induction. Budapest, Akademiai Kiado, 1985, 439–442.

    Google Scholar 

  120. Yoshida Y, Aoyama Y, Takano H, Kato T: Stereoselective interaction of enantiomers of diniconazole, a fungicide, with purified P45014DM from yeast. Biochem Biophys Res Commun 137:513–519, 1986.

    PubMed  CAS  Google Scholar 

  121. Yoshida Y, Aoyama Y: Interaction of azole fungicides with yeast cytochrome P450 which catalyzes lanosterol 14a-demethylation, Iwata K Vanden Bossche H : In Vitro and In Vivo Evaluation of Antifungal Agents. Amsterdam, Elsevier, 1986, 123–134.

    Google Scholar 

  122. Yoshida Y, Aoyama Y: Interaction of azole antifungal agents with cytochrome P45014DM purified from Saccharomyces cerevisiae microsomes. Biochem Pharmacol 36:229–235, 1987.

    PubMed  CAS  Google Scholar 

  123. Yoshioka H, Morohashi K, Sogawa K, Yamane M, Kominami S, Takemori S, Okada Y, Omura T, Fujii-Kuriyama Y: Structural analysis of cloned cDNA for mRNA of microsomal cytochrome P450(C21) which catalyzes steroid 21-hydroxylation in bovine adrenal cortex. J Biol Chem 261:4106–4109, 1986.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Yoshida, Y. (1988). Cytochrome P450 of Fungi: Primary Target for Azole Antifungal Agents. In: McGinnis, M.R. (eds) Current Topics in Medical Mycology. Current Topics in Medical Mycology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3730-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3730-3_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8323-2

  • Online ISBN: 978-1-4612-3730-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics