Skip to main content

Advertisement

Log in

Vanadium in Biosphere and Its Role in Biological Processes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malhotra VK (1998) Biochemistry for students. New Delhi

  2. Eruvbetine D (2003) Canine nutrition and health. A paper presented at the seminar organized by Kensington Pharmaceuticals Nig. Ltd., Lagos

  3. Murray RK, Granner DK, Mayes PA, Rodwell VW (2000) Harper’s biochemistry. McGraw-Hill, Health Profession Division

  4. Underwood EJ, Suttle NF (2010) The mineral nutrition of livestock. CABI, New York

    Google Scholar 

  5. Nielsen FH (1998) Ultratrace elements in nutrition: current knowledge and speculation. J Trace Elem Exp Med 11:2. https://doi.org/10.1002/(SICI)1520-670X(1998)11:2/3<251::AID-JTRA15>3.0.CO;2-Q

    Article  Google Scholar 

  6. Verma S, Cam MC, McNeil JH (1998) Nutritional factors that can favorably influence the glucose/insulin system: vanadium. J Am Coll Nutr 17(1):11–18. https://doi.org/10.1080/07315724.1998.10718730

    Article  CAS  PubMed  Google Scholar 

  7. Moskalyk RR, Alfanti AM (2003) Processing of vanadium: a review. Miner Eng 16(9):793–805. https://doi.org/10.1016/S0892-6875(03)00213-9

    Article  CAS  Google Scholar 

  8. Baroch F (2006) Vanadium and vanadium alloys. In: Kirk-Othmer Encyclopedia of Chemical Technology. Willey, New York, pp 1–18. https://doi.org/10.1002/0471238961.22011401.a01.pub2

    Chapter  Google Scholar 

  9. Reul Beaneadicte A, Amin SS, Buchet J-P, Ongemba LN, Crans DC, Brichard SM (1999) Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Br J Pharmacol 126:467–477. https://doi.org/10.1038/sj.bjp.0702311

    Article  Google Scholar 

  10. Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M (2004) Vanadium an element of atypical biological significance. Toxicol Lett 150:135–143. https://doi.org/10.1016/j.toxlet.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  11. Badmaev V, Prakash S, Majeed M (1999) Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med 5:273–291. https://doi.org/10.1089/acm.1999.5.273

    Article  CAS  PubMed  Google Scholar 

  12. Harland BF, Harland Williams BA (1994) Is vanadium of human nutritional importance yet? J Am Diet Assoc 94(8):891–894. https://doi.org/10.1016/0002-8223(94)92371-X

    Article  CAS  PubMed  Google Scholar 

  13. Lide DR (2008) Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  14. NRC (2005) Mineral tolerances of animals. National Academy of Sciences, Washington, DC

    Google Scholar 

  15. Martin HW, Young TR, Kaplan DI, Simon L, Adriano DC (1996) Evaluation of three herbaceous index plant species for bioavailability of soil cadmium, chromium, nickel and vanadium. Plant Soil 182(2):199–207. https://doi.org/10.1007/BF00029051

    Article  CAS  Google Scholar 

  16. Vwioko D, Anoliefo G, Fashemi S (2006) Metal concentration in plant tissues of Ricinus communis L.(castor oil) grown in soil contaminated with spent lubricating oil. J Appl Sci Environ Manag (3):10, 127–134. https://doi.org/10.4314/jasem.v10i3.17331

  17. Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition. Boca Raton, London

    Book  Google Scholar 

  18. Wang JF, Liu Z (1999) Effect of vanadium on the growth of soybean seedlings. Plant Soil 2016(1):47–51. https://doi.org/10.1023/A:1004723509113

    Article  Google Scholar 

  19. EPA (2003) U.S. Environmental Protection Agency. EPA’s report on the environment (2003 draft). U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  20. Anke M (2004) Vanadium—an element both essential and toxic to plants, animals and humans. Anal Real Acad Nac Farm 70:961–999

    CAS  Google Scholar 

  21. Barceloux DG (1999) Vanadium. J Toxicol Clin Toxicol 37(2):265–278

    Article  CAS  Google Scholar 

  22. NRC (1980) Mineral tolerance of domestic animals. In: Vanadium. National Academy Press, Washington, D.C, pp. 534–552

  23. Myron DR, Givand SH, Nielsen FH (1977) Vanadium content of selected foods as determined by flameless atomic absorption spectroscopy. J Agric Food Chem 25:297–300. https://doi.org/10.1021/jf60210a036

    Article  CAS  PubMed  Google Scholar 

  24. EFSA (2010) Technical report on selected trace and ultratrace elements: biological role, content in feed and requirements in animal nutrition—elements for risk assessment

  25. Berry RE, Armstrong EM, Beddoes RL, Collison D, Ertok SN, Helliwell M, Garner CD (1999) The structural characterization of amavadin. Angew Chem Int Ed 38(6):795–797. https://doi.org/10.1002/(SICI)1521-3773(19990315)38:6<795::AID-ANIE795>3.0.CO;2-7

    Article  CAS  Google Scholar 

  26. Hubregtse T, Neeleman E, Maschmeyer T, Sheldon RA, Hanefeld U, Arends JWCE (2005) The first enantioselective synthesis of the amavidin ligand and its complexation to vanadium. J Inorg Biochem 99(5):1264–1267. https://doi.org/10.1016/j.jinorgbio.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  27. Waters MD (1977) Toxicology of vanadium. In: Goyer RA, Mehlman MA (eds) Advances in modern toxicology. Toxicology of trace elements, Wiley, New York, pp 147–189

    Google Scholar 

  28. WHO (World Health Organization) (2001) Vanadium pentoxide and other inorganic vanadium compounds. Concise International Chemical Assessment Document 29. Geneva: WHO. http:// www.inchem.org/documents/cicads/cicads/cicad29.htm. Accessed April 22, 2005

  29. US Department of Energy (1999) Final site observational work plan for the UMTRA project old rifle site GJO–99–88–TAR. U.S. Department of Energy, Grand Junction

  30. WHO (World Health Organization) (1988) Vanadium. In: Environmental Health Criteria 81. Geneva, pp 1–170

  31. Nielson FH, Uthus EO (1990) Vanadium in biological systems. In: Chasteen ND (ed) Physiology and biochemistry. Kluwer Academic, London, pp 51–56

    Google Scholar 

  32. Clark TA, Deniset JF, Heyliger CE, Pierce GN (2013) Alternative therapies for diabetes and its cardiac complications: role of vanadium. Heart Fail Rev. https://doi.org/10.1007/s10741-013-9380-0

    Article  Google Scholar 

  33. Vilter H (1984) Peroxidases from Phaephyceae: vanadium (V)-dependent peroxidase from Asocphyllum nodosum. Phytochemistry 23: 1387-1390. https://doi.org/10.1016/S0031-9422(00)80471-9

    Article  CAS  Google Scholar 

  34. Cusi K, Cukier S, Defronzo RA, Torres M, Puchulu FM, Redondo JC (2001) Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocriol Metab 86:1410–1417

    CAS  Google Scholar 

  35. Guo J, Han C, Liu Y (2010) A contemporary treatment approach to both diabetes and depression by cordyceps sinensis, rich in vanadium. Evid Based Complement Alternat Med 7(3):387–389. https://doi.org/10.1210/jcem.86.3.7337

    Article  PubMed  Google Scholar 

  36. Samanta S, Swamy V, Suresh D, Rajkumar M, Rana B, Rana A, Chatterjee M (2008) Protective effects of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon: removal of O (6)-methylguanine DNA adducts, p53 expression, inducible nitric oxide synthase downregulation and apoptotic induction. Mutat Res 650(2):123–131. https://doi.org/10.1016/j.mrgentox.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  37. Crans DC, Mahroof-Tahir M, Johnson MD, Wilkins PC, Yang L, Robbins K, Johnson A, Alfano JA, Godzala ME (2003) Vanadium (IV) and vanadium (V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray structure, solution state properties and effects in rats with STZ-induced diabetes. Inorg Chim Acta 356:365–378. https://doi.org/10.1016/S0020-1693(03)00430-4

    Article  CAS  Google Scholar 

  38. Kreider RB (1999) Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med 27(2):97–110. https://doi.org/10.2165/00007256-199927020-00003

    Article  CAS  PubMed  Google Scholar 

  39. Aureliano M, Ohlin CA (2014) Decavanadate in vitro and in vivo effects: facts and opinions. J Inorg Biochem 137:123–130. https://doi.org/10.1016/j.jinorgbio

    Article  CAS  PubMed  Google Scholar 

  40. Arnon DL, Wessel G (1953) Vanadium as an essential for green plants. Nature 172:1039–1040. https://doi.org/10.1038/1721039a0

    Article  CAS  PubMed  Google Scholar 

  41. De Boer E, Van Kooyk Y, Tromp MGM, Plat H, Wever R (1986) Bromoperoxidase from Ascophyllum nodosum: a novel class of enzymes containing vanadium as prosthetic group. Biochem Biophys Acta 869:48–53. https://doi.org/10.1016/0167-4838(86)90308-0

    Article  Google Scholar 

  42. Nielsen FH (1996) How should dietary guidance be given for mineral elements with beneficial actions or suspect of being essential? J Nutr 126:2377S–2385S

    Article  CAS  Google Scholar 

  43. Almeida M, Filipe S, Humanes M, Maia MF, Melo R, Severino N, da Silva JAL, Fraústo da Silva JJR, Wever R (2001) Vanadium haloperoxidases from brown algae of the Laminariaceae family. Phytochemistry 57:633–642. https://doi.org/10.1016/S0031-9422(01)00094-2

    Article  CAS  PubMed  Google Scholar 

  44. Rehder D (2014) Vanadium. Its role for humans. In: Sigel A, Sigel H, Sigel RKO (eds) Interrelations between essential metal ions and human diseases. Metal ions in life sciences. Springer, pp 139–169. https://doi.org/10.1007/978-94-007-7500-8_5

    Google Scholar 

  45. Antipov AN, Dimitry YS, Nikolay PL, Kuenen JG (2003) New enzyme belonging to the family of molybdenum-free nitrate reductases. Biochem J 369(1):185–189. https://doi.org/10.1042/bj20021193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krosniak M, Francik R, Kołodziejczyk K, Wojtanowska-Krosniak A, Tedeschi C, Petrone V, Grybos R (2014) Investigation of the influence of vanadium compounds treatment in NZO mice model—preliminary study. Acta Pol Pharm 71(2):271–278

    PubMed  Google Scholar 

  47. Hopkins LL Jr, Mohr HE (1971) The biological essentiality of vanadium. In: Newer trace elements in nutrition. Marcel, New York, pp 195–213

    Google Scholar 

  48. Hays VW, Swenson MJ (1985) Minerals and bones. In: Dukes’ physiology of domestic animals, 10th edn. Cornel University Press, Ithaca, pp 449–466

    Google Scholar 

  49. Kordowiak AM, Holko P (2009) Pochodne wanadu jako zwiaki o istotnym znaczeniu biologicznym. Czesc I. Dzialanie przeciwcukrzycowe. Post Biol Kom 36:361–376 (in Polish)

    Google Scholar 

  50. Strasia CA (1971) Vanadium: essentiality and toxicity in the laboratory rat. Dissertation. University of California

  51. Gruzewska K, Michno A, Pawelczyk T, Bielarczyk A (2014) Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol 65(5):603–611

    CAS  PubMed  Google Scholar 

  52. Uthus EO, Nielsen FH (1990) Main content area effect of vanadium, iodine and their interaction on growth, blood variables, liver trace elements and thyroid status indices in rats. Magnes Trace Elem 9(4):219–226

    CAS  PubMed  Google Scholar 

  53. Shepherd LC, Lima H, Ott M (2015) The effects of diet and vanadyl sulfate supplementation on blood glucose levels of diabetics: review of current human data and recommendations for further study. 2(3):00026. https://doi.org/10.15406/mojph.2015.02.00026

  54. Ulbricht C, Chao W, Costa D, Culwell S, Eichelsdoerfer P (2012) An evidence-based systematic review of vanadium by the natural standard research collaboration. J Diet Suppl 9(3):223–251. https://doi.org/10.3109/19390211.2012.709365

    Article  CAS  PubMed  Google Scholar 

  55. Ivancsits S, Pilger A, Diem E, Schaffer A, Rudiger HW (2002) Vanadate induces DNA strand breaks in cultured human fibroblasts at doses relevant to occupational exposure. MutatRes 519:25–35. https://doi.org/10.1016/S1383-5718(02)00138-9

    Article  CAS  Google Scholar 

  56. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H (2003) Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52(3):581–587. https://doi.org/10.2337/diabetes.52.3.581

    Article  CAS  PubMed  Google Scholar 

  57. Poucheret P, Verma S, Grynpas MD, McNeill JH (1998) Vanadium and diabetes. Mol Cell Biochem 188(1):73–80. https://doi.org/10.1023/A:1006820522587

    Article  CAS  PubMed  Google Scholar 

  58. Dai S, Vera E, McNeill JH (1995) Lack of hematological effect of oral vanadium treatment in rats. Pharmacol Toxicol 76:263–264. https://doi.org/10.1023/A:1006820522587

    Article  CAS  PubMed  Google Scholar 

  59. Anke M, Groppel B, Gruhn K, Kosla T, Szilagyi M (1986b) New research on vanadium deficiency in ruminants. In: Proceedings 5th Spurenelement Symposium. University Jena, Germany, Jena, pp 1266–1275

    Google Scholar 

  60. Fawcett JP, Farquhar SJ, Thou T, Shand BI (1997) Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans. Pharmacol Toxicol 80:202–206. https://doi.org/10.1111/j.1600-0773.1997.tb00397.x

    Article  CAS  PubMed  Google Scholar 

  61. Miranda CT, Carvalho S, Yamaki RT, Paniago EB, Borges RH, De Bellis VM (2010) Formation and structure in aqueous solution of complexes between vanadium (V) and aminohydroxamic acids that potentiates vanadium’s insulinomimetic activity: l-glutamic γ-hydroxamic and l-aspartic-β-hydroxamic acids. Inorganica Chimica Acta 363(14):3776–3783. https://doi.org/10.1016/j.ica.2010.05.033

    Article  CAS  Google Scholar 

  62. Tiago DM, Cancela ML, Aureliano M, Laize V (2008) Vanadate proliferative and anti-mineralogenic effects are mediated by MAPK and PI-3K/Ras/Erk pathways in a fish chondrocyte cell line. FEBS Lett 582:1381–1385. https://doi.org/10.1016/j.febslet.2008.03.025

    Article  CAS  PubMed  Google Scholar 

  63. Sakurai H (2010) Overview and frontier for the development of metallopharmaceutics. J Health Sci 56(2):129–143

    Article  CAS  Google Scholar 

  64. Dermience M, Lognay G, Mathieu F, Goyens P (2015) Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 32:86–106. https://doi.org/10.1016/j.jtemb.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  65. Wever R, Hemrika W (2001) Handbook of metalloproteins edited by Albrecht Messerschmidt, Robert Huber, Thomas Poulos and Karl Wieghardt. John Wiley and Sons, Ltd., Chichester

    Google Scholar 

  66. Chasteen ND (1990) Vanadium in biological systems—physiology and biochemistry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  67. Zhang Y, Zhang Q, Feng C, Ren X, Li H, He K, Wang F, Zhou D, Lan Y (2014) Influence of vanadium on serum lipid and lipoprotein profiles: a population-based study among vanadium exposed workers. Lipids Health Dis 13:39. https://doi.org/10.1186/1476-511X-13-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kurt O, Ozden T, Ozsoy N, Tunali S, Can A, Akev N, Yanardag R (2011) Influence of vanadium supplementation on oxidative stress factors in the muscle of STZ-diabetic rats. BioMetals 24(5):943–949. https://doi.org/10.1007/s10534-011-9452-3

    Article  CAS  PubMed  Google Scholar 

  69. Francik R, Krosniak M, Barlik M, Kudła A, Grybos R, Librowski T (2011) Impact of vanadium complexes treatment on the oxidative stress factors in Wistar rats Plasma. Bioinorgan Chem Appl 2011:8. https://doi.org/10.1155/2011/206316

    Article  CAS  Google Scholar 

  70. Scibior A (2016) Vanadium (V) and magnesium (Mg) in vivo interactions: a review. Chem Biol Interact 258:21433. https://doi.org/10.1016/j.cbi.2016.09.007

    Article  CAS  Google Scholar 

  71. Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA (2015) Biotransformations of antidiabetic vanadium prodrugs in mammalian cells and cell culture media: a XANES spectroscopic study. Inorg Chem 54(14):6707–6718. https://doi.org/10.1021/ic5028948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sabbioni E, Rade J (1980) Relationship between iron and vanadium metabolism: the association of vanadium with bovine lactoferrin. Toxicol Lett 5(6):381–387. https://doi.org/10.1016/0378-4274(80)90019-3

    Article  CAS  PubMed  Google Scholar 

  73. Kawakami N, Ueki T, Amata Y, Kanamori K, Matsuo K, Gekko K, Michibata H (2009) A novel vanadium reductase, Vanabin2, forms a possible cascade involved in electron transfer. Biochim Biophys Acta, Proteins Proteomics 1794(4):674–679. https://doi.org/10.1016/j.bbapap.2009.01.007

    Article  CAS  Google Scholar 

  74. Denu JM, Kohse DL, Vijayalakshmi J, Saper MA, Dixon JE (1996) Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci 93(6):2493–2498

    Article  CAS  Google Scholar 

  75. Anderson DH, Berg JR, Swinehart JH (1991) Uptake of vanadium by the ascidian Ascidia ceratodes. Comp Biochem Physiol 99(1–2):151–158. https://doi.org/10.1016/0300-9629(91)90250-G

    Article  Google Scholar 

  76. Ueki T, Adachi T, Kawano S, Aoshima M, Yamaguchi N, Kanamori K, Michibata H (2003) Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochim Biophys Acta 1626(1–3):43–50. https://doi.org/10.1016/S0167-4781(03)00036-8

    Article  CAS  PubMed  Google Scholar 

  77. Kanda T, Nose Y, Wuchiyama J, Uyama T, Moriyama Y, Michibata H (1997) Identification of a vanadium-associated protein from the vanadium-rich ascidian, Ascidia sydneiensis samea. Zool Sci 14(1):37–42. https://doi.org/10.1016/S0167-4781(03)00036-8

    Article  CAS  PubMed  Google Scholar 

  78. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104(2):849–902. https://doi.org/10.1021/cr020607t

    Article  CAS  PubMed  Google Scholar 

  79. Kawakami N, Ueki T, Matsuo K, Gekko K, Michibata H (2006) Selective metal binding by Vanabin2 from the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim Biophys Acta 1760:1096–1101. https://doi.org/10.1016/j.bbagen.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  80. Eady RR (1996) Structureminus sign function relationships of alternative nitrogenases. Chem Rev 96(7):3013–3030. https://doi.org/10.1021/cr950057h

    Article  CAS  Google Scholar 

  81. Kiss T, Kiss E, Garribba E, Sakurai H (2000) Speciation of insulinmimetic VO (IV)-containing drugs in blood serum. J Inorg Biochem 80:65–73. https://doi.org/10.1016/S0162-0134(00)00041-6

    Article  CAS  PubMed  Google Scholar 

  82. Nriagu JP (1998) Vanadium in the environment. In: part 2: health effects. New York

  83. NRC (1995) Nutrient requirements of laboratory animals. National Academy Press, Washington, D.C

    Google Scholar 

  84. Cantley LCJR, Resh MD, Guidotti G (1978) Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature 272:552–554. https://doi.org/10.1038/272552a0

    Article  CAS  PubMed  Google Scholar 

  85. Hirano S, Suzuki KT (1996) Exposure metabolism and toxicity for rare earths and related compounds. Environ Health Perspect 104:85–95

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Venkataraman BV, Sudha S (2005) Vanadium toxicity. Asian J Exp Sci 19(2):127–134

    CAS  Google Scholar 

  87. Parker RD, Sharma RP (1978) Accumulation and depletion of vanadium in selected tissues of rats treated with vanadyl sulfate and sodium orthovanadate. J Environ Pathol Toxicol 2(2):235–245

    CAS  PubMed  Google Scholar 

  88. Nielsen FH (1995) Vanadium in mammalian physiology and nutrition. In Metal ions in biological systems. Vanadium and its role in life, vol 31. Marcel Dekker, New York, pp 543–573

    Google Scholar 

  89. Urban J, Antonowicz-Juchniewicz J, Andrzejak R (2001) Wanad - zagrozenia i nadzieje. Medycyna Praktyczna 52:125–133

    CAS  Google Scholar 

  90. Alimonti A, Petrucci F, Krachler M, Bocca B, Caroll S (2000) Reference values for chromium, nickel and vanadium in urine of youngsters form the urban area of Rome. J Environ Monit 2:351–354. https://doi.org/10.1039/b001616k

    Article  CAS  PubMed  Google Scholar 

  91. Cam MC, Li WM, McNeill JH (1997) Partial preservation of pancreatic beta-cells by vanadium. Evidence for long term amelioration of diabetes. Metabolism 46(7):769–778. https://doi.org/10.1016/S0026-0495(97)90121-9

    Article  CAS  PubMed  Google Scholar 

  92. Brichard SM, Henquin JC (1995) The role of vanadium in the management of diabetes. Trends Pharmacol Sci 16:265–269. https://doi.org/10.1016/S0165-6147(00)89043-4

    Article  CAS  PubMed  Google Scholar 

  93. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim Pol 59(2):195–200

    CAS  PubMed  Google Scholar 

  94. Hansen TV, Aaseth J, Alexander (1982) The effect of chelating agents on vanadium distribution in the rat body and on uptake by human erythrocytes. Arch Toxicol 50 (3): 195–202.https://doi.org/10.1007/BF00310851

  95. Gummow B, Botha CJ, Noordhuizen JPTM, Heesterbeek JAP (2005) The public health implications of farming cattle in areas with high background concentrations of vanadium. Prev Vet Med 72:281–290. https://doi.org/10.1016/j.prevetmed.2005.07.012

    Article  CAS  PubMed  Google Scholar 

  96. Hansard SL, Ammerman CB, Henry PR (1982) Vanadium metabolism in sheep. II. Effect of dietary vanadium on performance, vanadium excretion and bone deposition in sheep. J Anim Sci 55(2):350–356. https://doi.org/10.2527/jas1982.552350x

    Article  CAS  PubMed  Google Scholar 

  97. Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD (2006) The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 38:368–377. https://doi.org/10.1016/j.bone.2005.08.015

    Article  CAS  PubMed  Google Scholar 

  98. Hulley PA, Conradie MM, Langeveldt CR, Hough FS (2002) Glucocorticoid-induced osteoporosis in the rat is prevented by the tyrosine phosphatase inhibitor, sodium orthovanadate. Bone 31(1):220–229. https://doi.org/10.1016/S8756-3282(02)00807-4

    Article  CAS  PubMed  Google Scholar 

  99. Heinemann G, Fichtl B, Mentler M, Vogt W (2002) Binding of vanadate to human albumin in infusion solutions, to proteins in human fresh frozen plasma, and to transferring. J Inorg Biochem 90:38–42. https://doi.org/10.1016/S0162-0134(02)00399-9

    Article  CAS  PubMed  Google Scholar 

  100. Purcell M, Neault JF, Malonga H, Arakawa H, Tajmir-Riahi HA (2001) Interaction of human serum albumin with oxovanadium ions studied by FT-IR spectroscopy and gel and capillary electrophoresis. Can J Chem 79(10):1415–1421. https://doi.org/10.1139/v01-162

    Article  CAS  Google Scholar 

  101. Willsky GR, Chi LH, Liang Y, Gaile DP, Hu Z, Crans DC (2006) Diabetes-altered gene expression in rat skeletal muscle corrected by oral administration of vanadyl sulphate. Physiol Genomics 26:192–201. https://doi.org/10.1152/physiolgenomics.00196.2005

    Article  CAS  PubMed  Google Scholar 

  102. Goldwaser I, Qian S, Gershonov E, Fridkin M, Shechter Y (2000) Organic vanadium chelators potentiate vanadium-evoked glucose metabolism in vitro and in vivo: establishing criteria for optimal chelators. Mol Pharmacol 58:738–746. https://doi.org/10.1124/mol.58.4.738

    Article  CAS  PubMed  Google Scholar 

  103. Tang H, Sun Y, Xiu Q, Lu H, Han H (2007) Cyclooxygenase-2 induction requires activation of nuclear factor of activated T-cells in Beas-2B cells after vanadium exposure and plays anti-apoptotic role. Arch Biochem Biophys 468:92–99. https://doi.org/10.1016/j.abb.2007.09.016

    Article  CAS  PubMed  Google Scholar 

  104. Elberg G, Li J, Shechter Y (1994) Vanadium activates or inhibits receptor and non-receptor protein tyrosine kinases in cell-free experiments, depending on its oxidation state. Possible role of endogenous vanadium in controlling cellular protein tyrosine kinase activity. J Biol Chem 269(13):9521–9527

    CAS  PubMed  Google Scholar 

  105. Bishayee A, Waghray A, Patel MA, Chatterjee M (2010) Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett 294:1–12. https://doi.org/10.1016/j.canlet.2010.01.030

    Article  CAS  PubMed  Google Scholar 

  106. Cantley LC Jr, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252(21):7421–7423

    CAS  PubMed  Google Scholar 

  107. Krejsa CM, Nadler SG, Esseltyn JM, Kavanagh TJ, Ledbetter JA, Schieven GL (1997) Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors redox independent activation of NF-kappaB. J Biol Chem 272(17):11541–11549. https://doi.org/10.1074/jbc.272.17.11541

    Article  CAS  PubMed  Google Scholar 

  108. Imtiaz M, Rizwan MS, Xiong S, Li H, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu S (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88. https://doi.org/10.1016/j.envint.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  109. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-sun G, Fantus IG, NGG JB, Hall DA, Soo Lum B, Shaver A (1994) Peroxovanadium compounds: a new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem 269:4596–4604

    CAS  PubMed  Google Scholar 

  110. Wei D, Li M, Ding W (2007) Effect of vanadate on gene expression of the insulin signalling pathway in skeletal muscle of streptozotocin-induced diabetic rats. J Biol Inorg Chem 12:1265–1273. https://doi.org/10.1007/s00775-007-0294-y

    Article  CAS  PubMed  Google Scholar 

  111. Battell ML, Yuen VG, McNeill JH (1992) Treatment of BB rats with vanadyl sulphate. Pharmacol Commun 1:291–301

    CAS  Google Scholar 

  112. Cam MC, Cross GH, Serrano JJ, Lazaro R, McNeill JH (1993) In vivo antidiabetic actions of Naglivan, an organic vanadyl compound in streptozotocin induced diabetes. Diabetes Res Clin Pract 20(2):111–121. https://doi.org/10.1016/0168-8227(93)90004-O

    Article  CAS  PubMed  Google Scholar 

  113. Fantus IG, Tsiani E (1998) Multifunctional actions of vanadium compounds on insulin signalling pathways: evidence for preferential enhancement of metabolic versus mitogenic effects. Mol Cell Biochem 182:109–119. https://doi.org/10.1023/A:1006853426679

    Article  CAS  PubMed  Google Scholar 

  114. Brichard SM, Ongemba LN, Henquin JC (1992) Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia 35:522–527. https://doi.org/10.1007/BF00400479

    Article  CAS  PubMed  Google Scholar 

  115. Trevino S, Velazquez-Vazquez D, Sanchez-Lara E, Diaz-Fonseca A, Flores-Hernandez JA, Perez-Benítez A, Brambila-Colombres E, Gonzalez-Vergara E (2016) Metforminium decavanadate as a potential metallopharmaceutical drug for the treatment of diabetes mellitus. Oxidative Med Cell Longev. https://doi.org/10.1155/2016/6058705

    Article  Google Scholar 

  116. Carpene C, Garcia-Vicente S, Serrano M, Marti L, Belles C, Royo M, Galitzky J, Zorzano A, Testar X (2017) Insulin-mimetic compound hexaquis (benzylammonium) decavanadate is antilipolytic in human fat cells. World J Diabetes 8(4):143–153. https://doi.org/10.4239/wjd.v8.i4.143

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yraola F, García-Vicente S, Marti L, Albericio F, Zorzano A, Royo M (2007) Understanding the mechanism of action of the novel SSAO substrate (C7NH10)6(V10O28).2H2O, a prodrug of peroxovanadate insulin mimetics. Chem Biol Drug Des 69:423–428. https://doi.org/10.1111/j.1747-0285.2007.00516.x

    Article  CAS  PubMed  Google Scholar 

  118. Zorzano A, Palacín M, Marti L, García-Vicente S (2009) Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem 103:559–566. https://doi.org/10.1016/j.jinorgbio.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  119. Yraola F, Zorzano A, Albericio F, Royo M (2009) Structure-activity relationships of SSAO/VAP-1 arylalkylamine-based substrates. Chem Med Chem 4:495–503. https://doi.org/10.1002/cmdc.200800393

    Article  CAS  PubMed  Google Scholar 

  120. Park SJ, Youn C, Hyun JW, You HJ (2013) The anti-obesity effect of natural vanadium-containing Jeju ground water. Biol Trace Elem Res 151:294–300. https://doi.org/10.1007/s12011-012-9557-8

    Article  CAS  PubMed  Google Scholar 

  121. Huang M, Wu Y, Wang N, Wang Z, Zhao P, Yang X (2014) Is the hypoglycemic action of vanadium compounds related to the suppression of feeding? Biol Trace Elem Res 157:242–248. https://doi.org/10.1007/s12011-013-9882-6

    Article  CAS  PubMed  Google Scholar 

  122. Swarup G, Cohen S, Garbers DL (1982) Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun 107:1104–1109. https://doi.org/10.1016/0006-291X(82)90635-0

    Article  CAS  Google Scholar 

  123. Wu Y, Huang M, Zhao P, Yang X (2013) Vanadyl acetylacetonate upregulates PPARg and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem 18:623–631. https://doi.org/10.1007/s00775-013-1007-3

    Article  CAS  PubMed  Google Scholar 

  124. Garcia-Vicente S, Yraola F, Marti L (2007) Oral insulinmimetic compounds that act independently of insulin. Diabetes 56:486–493. https://doi.org/10.2337/db06-0269

    Article  CAS  PubMed  Google Scholar 

  125. Fraqueza G, Ohlin CA, Casey WH, Aureliano M (2012) Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanadate, vanadate, tungstate and molybdate. J Inorg Biochem 107:82–89. https://doi.org/10.1039/c2dt31688a

    Article  CAS  PubMed  Google Scholar 

  126. Saxena AK, Srivastava P, Kale RK, Baquer NZ (1993) Impaired antioxidant status in diabetic rat liver: effect of vanadate. Biochem Pharmacol 45(3):539–542. https://doi.org/10.1016/0006-2952(93)90124-F

    Article  CAS  PubMed  Google Scholar 

  127. Krosniak M, Kowalska J, Francik R, Gryboś R, Blusz M, Kwiatek WM (2013) Influence of vanadium–organic ligands treatment on selected metal levels in kidneys of STZ rats. Biol Trace Elem Res 153(1–3):319–328. https://doi.org/10.1007/s12011-013-9688-6

    Article  Google Scholar 

  128. Hill CH (1994) Interaction of vanadium and phosphorus in chicks. Biol Trace Elem Res 46(3):269–278. https://doi.org/10.1007/BF02789302

    Article  CAS  PubMed  Google Scholar 

  129. Ukkola O, Santaniemi M (2002) Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. J Intern Med 251(6):467–475. https://doi.org/10.1046/j.1365-2796.2002.00992.x

    Article  CAS  PubMed  Google Scholar 

  130. Srivastava AK, Mehdi MS (2004) Insulino-mimetic and anti-diabetic effects of vanadium compounds diabetes. Diabet Med 22:2–13. https://doi.org/10.1111/j.1464-5491.2004.01381

  131. Goldfine AB, Patti ME, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, Jiang ZY, Willsky GR, Kahn CR (2000) Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism 49:400–410. https://doi.org/10.1016/S0026-0495(00)90418-9

    Article  CAS  PubMed  Google Scholar 

  132. Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H (1996) Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 45(5):659–666. https://doi.org/10.2337/diab.45.5.659

    Article  CAS  PubMed  Google Scholar 

  133. Marzban L, McNeill JH (2003) Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med 16:253–267. https://doi.org/10.1002/jtra.10034

    Article  CAS  Google Scholar 

  134. McNeill JH, Yuen VG, Dai S, Orgiv C (1995) Increased potency of vanadium using organic ligands. Mol Cell Biochem 153:175–180. https://doi.org/10.1007/BF01075935

    Article  CAS  PubMed  Google Scholar 

  135. Sigel A, Sigel H,Sigel R (2013) Interrelations between essential metal ions and human diseases, vol 13, Zurich, Switzerland. https://doi.org/10.1007/978-94-007-7500-8

    Google Scholar 

  136. Gonzalez-Sanchez C, Bermudez-Pena C, Guerrero-Romero F, Trenzado CE, Montes-Bayon M, Sanz-Medel A, Llopis J (2012) Effect of bis(maltolato)oxovanadium (IV) (BMOV) on selenium nutritional status in diabetic streptozotocin rats. Brit J Nutr 108:893–899. https://doi.org/10.1017/S0007114511006131

    Article  CAS  Google Scholar 

  137. Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80:3311–3320. https://doi.org/10.1210/jcem.80.11.7593444

    Article  CAS  PubMed  Google Scholar 

  138. Domingo JL, Gomez M (2016) Vanadium compounds for the treatment of human diabetes mellitus: a scientific curiosity? A review of thirty years of research. Food Chem Toxicol 95:137–141. https://doi.org/10.1016/j.fct.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  139. Valera A, Rodriguez-Gil JE, Bosch F (1993) Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats. J Clin Invest 92:4–11. https://doi.org/10.1172/JCI116580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Brichard SM, Desbuquois B, Girard J (1993) Vanadate treatment of diabetic rats reverses the impaired expression of genes involved in hepatic glucose metabolism. Effects on glycolytic and gluconeogenic enzymes, and on glucose transport GLUT2. Mol Cell Endocrinol 91(1–2):91–97. https://doi.org/10.1016/0303-7207(93)90259-M

    Article  CAS  PubMed  Google Scholar 

  141. Khandelwal RL, Pugazhenthi S (1995) In vivo effects of vanadate on hepatic glycogen metabolizing and lipogenic enzymes in insulin-dependent and insulin-resistant diabetic animals. Mol Cell Biochem 153:87–94

    Article  CAS  Google Scholar 

  142. Carey JD, Azevedo JL, Morris PG, Pories WJ, Dohm GL (1995) Okadaic acid, vanadate, and phenylarsine oxide stimulate 2-deoxyglucose transport in insulin-resistant human skeletal muscle. Diabetes 44(6):682–688. https://doi.org/10.1007/BF01075922

    Article  CAS  PubMed  Google Scholar 

  143. Kawabe K, Yoshikawa Y, Adachi Y, Sakurai H (2006) Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes. Life Sci 78:2860–2866. https://doi.org/10.1016/j.lfs.2005.11.008

    Article  CAS  PubMed  Google Scholar 

  144. Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26:1277–1294

    Article  CAS  Google Scholar 

  145. Connell B (2001) Select vitamins and minerals in the management of diabetes. Diabetes Spectrum 14:133–148. https://doi.org/10.2337/diaspect.14.3.133

    Article  Google Scholar 

  146. Ingram JL, Antao-Menezes A, Turpin EA (2007) Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis. Respir Res 8:1–13. https://doi.org/10.1186/1465-9921-8-34

    Article  CAS  Google Scholar 

  147. Tolman EL, Barris E, Burns M, Pansini A, Partridge R (1979) Effects of vanadium on glucose metabolism in vitro. Life Sci 25(13):1159–1164. https://doi.org/10.1016/0024-3205(79)90138-3

    Article  CAS  PubMed  Google Scholar 

  148. Irving E, Stoker AW (2017) Vanadium compounds as PTP inhibitors. Molecules 22(12):2269

    Article  Google Scholar 

  149. Aureliano M (2014) Decavanadate contribution to vanadium biochemistry: in vitro and in vivo studies. Inorg Chim Acta 420:4–7. https://doi.org/10.1016/j.jinorgbio

    Article  CAS  Google Scholar 

  150. White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:413–422. https://doi.org/10.1152/ajpendo.00514.2001

    Article  Google Scholar 

  151. Hei YJ, Farahbakhshian S, Chen X, Battell ML, McNeill JH (1998) Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes. Mol Cell Biochem 178(1–2):367–375. https://doi.org/10.1152/ajpendo.00514.2001

    Article  CAS  PubMed  Google Scholar 

  152. Brannick B, Kocak M, Solomon S (2017) Vanadium in glucose metabolism: past, present and future. J Toxicol Pharmacol 1:011

    Google Scholar 

  153. Jackson TK, Safhanick AI, Sparks JD, Sparks CE, Bolognino M, Amatruda JM (1988) Insulin-mimetic effects of vanadate in primary cultures of rat hepatocytes. Diabetes 37:1234–1240. https://doi.org/10.1016/S1383-5718(02)00138-9

    Article  CAS  PubMed  Google Scholar 

  154. Cuncic C, Detich N, Ethier D (1999) Vanadate inhibition of protein tyrosine phosphatases in Jurkat cells: modulation by redox state. J Biol Inorg Chem 4:354–359. https://doi.org/10.1007/s007750050322

    Article  CAS  PubMed  Google Scholar 

  155. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272(2):843–851. https://doi.org/10.1074/jbc.272.2.84.3

    Article  CAS  PubMed  Google Scholar 

  156. Castan I, Wijkander J, Manganiello V, Degerman E (1999) Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes. Biochem J 339(2):281–289. https://doi.org/10.1042/bj3390281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fantus IG, Deragon G, Lai R, Tang S (1995) Modulation of insulin action by vanadate: evidence of a role for phosphotyrosine phosphatase activity to alter cellular signalling. Mol Cell Biochem 153:103–112. https://doi.org/10.1007/BF01075924

    Article  CAS  PubMed  Google Scholar 

  158. Seale AP, de Jesus LA, Park M, Kim YS (2006) Vanadium and insulin increase adiponectin production in 3T3-L1 adipocytes. Pharmacol Res 54:30–38. https://doi.org/10.1016/j.phrs.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  159. Li SH, McNeill JH (2001) In vivo effects of vanadium on GLUT4 translocation in cardiac tissue of STZ-diabetic rats. Mol Cell Biochem 217:121–129. https://doi.org/10.1023/A:1007224828753

    Article  CAS  PubMed  Google Scholar 

  160. Kopp SJ, Daar J, Paulson DJ, Romano FD, Laddaga R (1997) Effects of oral vanadyl treatment on diabetes-induced alterations in heart GLUT4 transporter. J Mol Cell Cardiol 29:2355–2362. https://doi.org/10.1006/jmcc.1997.0469

    Article  CAS  PubMed  Google Scholar 

  161. Mohammad A, Sharma V, McNeill JH (2002) Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem 233(1-2):139–143. https://doi.org/10.1023/A:1015558328757

    Article  CAS  PubMed  Google Scholar 

  162. Rodriguez-Mercado JJ, Roldan-Reyes E, Altamirano-Lozano M (2003) Genotoxic effects of vanadium (IV) in human peripheral blood cells. Toxicol Lett 144:359–369. https://doi.org/10.1016/S0378-4274(03)00255-8

    Article  CAS  PubMed  Google Scholar 

  163. Liem DA, Gho CC, Gho BC, Kazim S, Manintveld OC, Verdouw PD, Duncker DJ (2004) The tyrosine phosphatas inhibitor bis(maltolato)-oxovanadium attenuates myocardial reperfusion injury by opening ATP-sensitive potassium channels. J Pharmacol Exp Ther 309:1256–1262. https://doi.org/10.1124/jpet.103.062547

    Article  CAS  PubMed  Google Scholar 

  164. Pugazhenthi S, Angel JF, Khandelwal RL (1993) Effects of high sucrose diet on insulin-like effects of vanadate in diabetic rats. Mol Cell Biochem 122(1):77–84. https://doi.org/10.1007/BF00925740

    Article  CAS  PubMed  Google Scholar 

  165. Clark AS, Fagan JM, Mitch WE (1985) Selectivity of insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem J 232(1):273–276. https://doi.org/10.1042/bj2320273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Michibata H, Sakurai H (1990) In: Chasteen ND (ed) Vanadium in biological systems. Kluwer, Boston

    Google Scholar 

  167. Yamaguchi M, Oishi H, Suketa Y (1989) Effect of vanadium on bone metabolism in weanling rats: zinc prevents the toxic effect of vanadium. Res Exp Med (Berl) 189(1):47–53

    Article  CAS  Google Scholar 

  168. Evangelou AM (2002) Vanadium in cancer treatment. Crit Rev Oncol Hematol 42:249–265. https://doi.org/10.1016/S1040-8428(01)00221-9

    Article  PubMed  Google Scholar 

  169. Dessoize B (2004) Metal and metal compounds in cancer treatment. Anticancer Res 24(3a):1529–1544

    Google Scholar 

  170. Holko P, Ligeza J, Kisielewska J, Kordowiak AM, Klein A (2008) The effect of vanadyl sulphate (VOSO4) on autocrine growth of human epithelial cancer cell lines. Pol J Pathol 59(1):3–8

    CAS  PubMed  Google Scholar 

  171. Mustafi D, Peng B, Foxley S, Makinen MW, Karczmar GS, Zamora M, Ejnik J, Martin H (2009) New vanadium-based magnetic resonance imaging probes: clinical potential for early detection of cancer. J Biol Inorg Chem 8:1187–1197. https://doi.org/10.1007/s00775-009-0562-0

    Article  CAS  Google Scholar 

  172. Alexandrova R, Alexandrov I, Nikolova E (2002) Effect of orally administered ammonium vanadate on the immune response of experimental animals. Comptes Rendus de l’ Academie Bulgare des Sciences 55(3):69

    CAS  Google Scholar 

  173. Tsave O, Petanidis S, Kioseoglou E, Yavropoulou MP, Yovos JG, Anestakis D, Tsepa A, Salifoglou A (2016) Role of vanadium in cellular and molecular immunology: association with immune-related inflammation and pharmacotoxicology mechanisms. Oxid Med Cell Longev. https://doi.org/10.1155/2016/4013639

    Article  Google Scholar 

  174. Ha D, Joo H, Ahn G, Kim MJ, Bing SJ, An S, Kim H, Kang KG, Lim YK, Jee Y (2012) Jeju ground water containing vanadium induced immune activation on splenocytes of low dose 훾-rays-irradiated mice. Food Chem Toxicol 50(6):2097–2105. https://doi.org/10.1016/j.fct.2012.03.041

    Article  CAS  PubMed  Google Scholar 

  175. Harati M, Ani M (2006) Low doses of vanadyl sulfate protect rats from lipid peroxidation and hypertriglyceridemic effects of fructose-enriched diet. Int J Diab Metabol 14(3):134–137

    CAS  Google Scholar 

  176. Mongold JJ, Cros GH, Vian L, Tep A, Ramanadham S, Siou G, Diaz J, McNeill JH, Serrano JJ (1990) Toxicological aspects of vanadyl sulphate on diabetic rats: effects on vanadium levels and pancreatic B-cell morphology. Pharmacol Toxicol 67(3):192–198. https://doi.org/10.1111/j.1600-0773.1990.tb00812.x

    Article  CAS  PubMed  Google Scholar 

  177. Malissen B, Gregoire C, Malissen M, Roncagalli R (2014) Integrative biology of T cell activation. Nat Immunol 15(9):790–797. https://doi.org/10.1038/ni.2959

    Article  CAS  PubMed  Google Scholar 

  178. Theron AJ, Tintinger GR, Anderson R (2012) Harmful interactions of non-essential heavy metals with cells of the innate immune system. J Clinic Toxicol S 3005. https://doi.org/10.4172/2161-0495.S3-005

  179. Fickl H, Theron AJ, Grimmer HR, Anderson R (2006) Vanadium promotes hydroxyl radical formation by activated human neutrophils. Free Radic Biol Med 40(1):146–155. https://doi.org/10.4172/2161-0495.S3-005

    Article  CAS  PubMed  Google Scholar 

  180. Davies MJ (2011) Myeloperoxidase derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 48(1):8–19. https://doi.org/10.3164/jcbn.11_006FR

    Article  CAS  PubMed  Google Scholar 

  181. Deng Y, Cui H, Peng X, Fang J, Wang K, Cui W, Liu X (2012) Dietary vanadium induces oxidative stress in the intestine of broilers. Biol Trace Elem Res 145(1):52–58. https://doi.org/10.1007/s12011-011-9163-1

    Article  CAS  PubMed  Google Scholar 

  182. Van Vleet JF, Boon GD, Ferrans VJ (1981) Induction of lesions of selenium-vitamin E deficiency in weanling swine fed silver, cobalt, tellurium, zinc, cadmium, and vanadium. Am J Vet Res 42(5):789–799

    PubMed  Google Scholar 

  183. Ghrehbeglou M, Arjmand G, Haeri MR, Khazeni M (2015) Nonselective mevalonate kinase inhibitor as a novel class of antibacterial agents. Cholesterol 2015:147601. https://doi.org/10.1155/2015/147601

    Article  CAS  Google Scholar 

  184. Muralidharan S, Mandrekar P (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94(6):1167–1184. https://doi.org/10.1189/jlb.0313153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Basu A, Singha S, Roy A, Bhattacharjee A, Bhuniya A, Baral R, Biswas J, Bhattacharya S (2015) Vanadium(III)-L-cysteine protects cisplatin-induced nephropathy through activation of Nrf2/HO-1 pathway. Free Radic Res 50(1):39–55. https://doi.org/10.3109/10715762.2015.1102908

    Article  CAS  PubMed  Google Scholar 

  186. Mao LL, Hao DL, Mao XWXYF, Huang TT, Wu BN, Wang LH (2015) Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition. Neurosci Lett 602:120–125. https://doi.org/10.1016/j.neulet.2015.06.040

    Article  CAS  Google Scholar 

  187. Kim AD, Zhang R, Ah Kang K, Jin You H, Won Hyun J (2011) Increased glutathione synthesis following Nrf2 activation by vanadyl sulfate in human chang liver cells. Int J Mol Sci 12:8878–8894. https://doi.org/10.3390/ijms12128878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yilmaz-Ozden T, Sirin OK, Tunali S, Akev N, Can A, Yanardag R (2014) Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats. Bosn J Basic Med Sci 14(2):105–109

    Article  CAS  Google Scholar 

  189. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Diabetes 52:599–622. https://doi.org/10.1210/er.2001-0039

    Article  CAS  Google Scholar 

  190. Desco MC, Asensi M, Marquez R, Martinex-Vallas J, Vento M, Pallardo FY, Sastre J, Vina J (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes. Diabetes 51(4):1118–1124. https://doi.org/10.2337/diabetes.51.4.1118

    Article  CAS  PubMed  Google Scholar 

  191. Ozturk N, Olgar Y, Ozdemir S (2013) Trace elements in diabetic cardiomyopathy: an electrophysiological overview. World J Diabetes 4:92–100. https://doi.org/10.4239/wjd.v4.i4.92

    Article  PubMed  PubMed Central  Google Scholar 

  192. Genet G, Kale RK, Baquer NZ (2002) Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonella foenum graecum). Mol Cell Biochem 236(1):7–12. https://doi.org/10.1023/A:101610313

    Article  CAS  PubMed  Google Scholar 

  193. Bhuiyan MS, Fukunaga K (2009) Cardioprotection by vanadium compounds targeting Akt-mediated signaling. Aust J Pharm 110:1–13. https://doi.org/10.1254/jphs.09R01CR

    Article  CAS  Google Scholar 

  194. Capella MA, Capella LS, Valente RC (2007) Vanadate-induced cell death is dissociated from H2O2 generation. Cell Biol Toxicol 23:413–420. https://doi.org/10.1007/s10565-007-9003-4

    Article  CAS  PubMed  Google Scholar 

  195. Srivastava AK, Mehdi MZ (2005) Insulino-mimetic and antidiabetic effects of vanadium compounds. Diabets Med 22:2–13. https://doi.org/10.1111/j.1464-5491.2004.01381.x

    Article  CAS  Google Scholar 

  196. Boulassel B, Sadeg N, Roussel O, Perrin M, Belhadj-Tahar H (2011) Fatal poisoning by vanadium. Forensic Sci Int 206:79–81. https://doi.org/10.1016/j.forsciint.2010.10.027

    Article  CAS  Google Scholar 

  197. Aureliano M, Gandara RM (2005) Decavanadate effects in biological systems. J Inorg Biochem 99:979–985. https://doi.org/10.1016/j.forsciint.2010.10.027

    Article  CAS  PubMed  Google Scholar 

  198. Villani P, Cordelli E, Leopardi P, Siniscalchi E, Veschetti E, Fresegna AM, Crebelli R (2007) Evaluation of genotoxicity of oral exposure to tetravalent vanadium in vivo. Toxicol Lett 170:11–18. https://doi.org/10.1016/j.toxlet.2006.07.343

    Article  CAS  PubMed  Google Scholar 

  199. Smith DM, Pickering RM, Lewith GT (2008) A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. Int J Med 101:351–358. https://doi.org/10.1093/qjmed/hcn003

    Article  CAS  Google Scholar 

  200. Suwalsky M, Fierro P, Villena F (2012) Human erythrocytes and neuroblastoma cells are in vitro affected by sodium orthovanadate. Biochim Biophys Acta 1818:2260–2270. https://doi.org/10.1016/j.bbamem.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  201. Suwalsky M, Fierro P, Villena F (2013) Effects of sodium metavanadate on in vitro neuroblastoma and red blood cells. Arch Biochem Biophys 535:248–256. https://doi.org/10.1016/j.abb.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  202. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes—a view to the future. J Inorg Biochem 103:554–558. https://doi.org/10.1016/j.jinorgbio.2008.12.003

    Article  CAS  Google Scholar 

  203. Montiel-Davalos A, Gonzalez-Villava A, Rodriguez-Lara V, Montano LF, Fortoul TI, Lopez-Marure R (2012) Vanadium pentoxide induces activation and death of endothelial cells. J Appl Toxicol 32(1):26–33. https://doi.org/10.1002/jat.1695

    Article  CAS  PubMed  Google Scholar 

  204. Soares SS, Gutierrez-Merino C, Aureliano M (2007) Decavanadate induces mitochondrial membrane depolarization and inhibits oxygen consumption. J Inorg Biochem 101:789–796. https://doi.org/10.1016/j.jinorgbio.2007.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D., Mani, V. & Pal, R.P. Vanadium in Biosphere and Its Role in Biological Processes. Biol Trace Elem Res 186, 52–67 (2018). https://doi.org/10.1007/s12011-018-1289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1289-y

Keywords

Navigation