Skip to main content
Log in

New vanadium-based magnetic resonance imaging probes: clinical potential for early detection of cancer

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We have developed a magnetic resonance imaging (MRI) method for improved detection of cancer with a new class of cancer-specific contrast agents, containing vanadyl (VO2+)-chelated organic ligands, specifically bis(acetylacetonato)oxovanadium(IV) [VO(acac)2]. Vanadyl compounds have been found to accumulate within cells, where they interact with intracellular glycolytic enzymes. Aggressive cancers are metabolically active and highly glycolytic; an MRI contrast agent that enters cells with high glycolytic activity could provide high-resolution functional images of tumor boundaries and internal structure, which cannot be achieved by conventional contrast agents. The present work demonstrates properties of VO(acac)2 that may give it excellent specificity for cancer detection. A high dose of VO(acac)2 did not cause any acute or short-term adverse reactions in murine subjects. Calorimetry and spectrofluorometric methods demonstrate that VO(acac)2 is a blood pool agent that binds to serum albumin with a dissociation constant K d ~ 2.5 ± 0.7 × 10−7 M and a binding stoichiometry n = 1.03 ± 0.04. Owing to its prolonged blood half-life and selective leakage from hyperpermeable tumor vasculature, a low dose of VO(acac)2 (0.15 mmol/kg) selectively enhanced in vivo magnetic resonance images of tumors, providing high-resolution images of their interior structure. The kinetics of uptake and washout are consistent with the hypothesis that VO(acac)2 preferentially accumulates in cancer cells. Although VO(acac)2 has a lower relaxivity than gadolinium-based MRI contrast agents, its specificity for highly glycolytic cells may lead to an innovative approach to cancer detection since it has the potential to produce MRI contrast agents that are nontoxic and highly sensitive to cancer metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Atomic absorption

BSA:

Bovine serum albumin

ENDOR:

Electron nuclear double resonance

EPR:

Electron paramagnetic resonance

EPSI:

Echo planar spectroscopic imaging

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid), sodium salt

ITC:

Isothermal titration calorimetry

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

VC:

Vanadyl chelate

VO(acac)2 :

Bis(acetylacetonato)oxovanadium(IV)

References

  1. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KCP (1998) Nat Med 4:623–626

    Article  CAS  PubMed  Google Scholar 

  2. Kopelman R, Koo YE, Philbert M, Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Bhojani MS, Buck SM, Rehemtulla A, Ross BD (2005) J Magn Magn Mater 293:404–410

    Article  CAS  Google Scholar 

  3. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC (2001) Magn Reson Mater Phys Biol Med 12:104–113

    Article  CAS  Google Scholar 

  4. Warburg O (1931) In: Smith RR (ed), 1st edn. New York, pp 129–169

  5. Warburg O (1956) Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  6. Pauwels EK, Sturm EJ, Bomardieri E, Cleton FJ, Stokkel MP (2000) J Cancer Res Clin Oncol 126:549–559

    Article  CAS  PubMed  Google Scholar 

  7. Barrington SF, O’Doherty MJ (2003) Eur J Nucl Med Mol Imaging 30:S117–S127

    Article  PubMed  Google Scholar 

  8. Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Spencer AM, Muzi M, Farwell DG, Krohn KA (2004) Clin Cancer Res 10:2245–2252

    Article  CAS  PubMed  Google Scholar 

  9. Stokkel MPM, ten Broek FW, van Rijk PP (1998) Oral Oncol 34:466–471

    Article  CAS  PubMed  Google Scholar 

  10. Gambhir SS (2002) Nat Rev Cancer 2:683–693

    Article  CAS  PubMed  Google Scholar 

  11. Strauss LG (1996) Eur J Nucl Med 23:1409–1415

    Article  CAS  PubMed  Google Scholar 

  12. Wong KP, Feng D, Meikle SR, Fulham MJ (2002) IEEE Trans Nucl Sci 49:200–207

    Article  Google Scholar 

  13. Lee J, Burdette JE, MacRenaris KW, Mustafi D, Woodruff TK, Meade TJ (2007) Chem Biol 14:824–834

    Article  CAS  PubMed  Google Scholar 

  14. Fugono J, Yasui H, Sakurai H (2001) J Pharm Pharmacol 53:1247–1255

    Article  CAS  PubMed  Google Scholar 

  15. Nakai M, Watanabe H, Fujiwara C, Kakegawa H, Satoh T, Takada J, Matsushita R, Sakurai H (1995) Biol Pharm Bull 18:719–725

    CAS  PubMed  Google Scholar 

  16. Makinen MW, Brady MJ (2002) J Biol Chem 277:12215–12220

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Elberg G, Crans DC, Shechter Y (1996) Biochemistry 35:8314–8318

    Article  CAS  PubMed  Google Scholar 

  18. Caravan P, Gelmini L, Glover N, Herring FG, Li H, McNeil JH, Rettig SJ, Setyawati IA, Shuter E, Sun Y, Tracey AS, Yuen VG, Orvig C (1995) J Am Chem Soc 117:12759–12770

    Article  Google Scholar 

  19. Sakurai H, Sano H, Takino T, Yasui H (2000) J Inorg Biochem 80:99–105

    Article  CAS  PubMed  Google Scholar 

  20. Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM (1999) Br J Pharm 126:467–477

    Article  CAS  Google Scholar 

  21. Yuen VG, Orvig C, McNeil JH (1995) Can J Physiol Pharm 73:55–64

    CAS  Google Scholar 

  22. Pandey SK, Anand-Srivastave MB, Srivastava AK (1998) Biochemistry 37:7006–7014

    Article  CAS  PubMed  Google Scholar 

  23. Pandey SK, Theberge J-F, Bernier M, Srivastava AK (1999) Biochemistry 38:14667–14675

    Article  CAS  PubMed  Google Scholar 

  24. Mustafi D, Liszewski W, Mustafi R, Peng B, Bissonnette M, Foxley S, Karczmar GS, Ejnik JW, Martin H (2009) Mol Imaging (in press)

  25. Chasteen ND (1981) In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 3. Plenum, New York, pp 53–119

  26. Ballhausen CJ, Gray HB (1962) Inorg Chem 1:111–122

    Article  CAS  Google Scholar 

  27. Chasteen ND, Lord EM, Thompson HJ, Grady JK (1986) Biochim Biophys Acta 884:84–92

    CAS  PubMed  Google Scholar 

  28. Chasteen ND, Francavilla J (1976) J Phys Chem 80:867–871

    Article  CAS  Google Scholar 

  29. Chasteen ND (1977) Coord Chem Rev 22:1–36

    Article  CAS  Google Scholar 

  30. Gerfen GJ, Hanna PM, Chasteen ND, Singel DJ (1991) J Am Chem Soc 113:9513–9519

    Article  CAS  Google Scholar 

  31. Mustafi D, Nakagawa Y (1994) Proc Natl Acad Sci USA 91:11323–11327

    Article  CAS  PubMed  Google Scholar 

  32. Mustafi D, Nakagawa Y (1996) Biochemistry 35:14703–14709

    Article  CAS  PubMed  Google Scholar 

  33. Mustafi D, Bekesi A, Vertessy BG, Makinen MW (2003) Proc Natl Acad Sci 100:5670–5675

    Article  CAS  PubMed  Google Scholar 

  34. Chen JW, Belford RL, Clarkson RB (1998) J Phys Chem A 102:2117–2130

    Article  CAS  Google Scholar 

  35. Holko P, Ligęza J, Kisielewska J, Kordowiak AM, Klein A (2008) Pol J Pathol 59:3–8

    CAS  PubMed  Google Scholar 

  36. Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99:2511–2534

    Article  CAS  PubMed  Google Scholar 

  37. Cruz TF, Morgan A, Min W (1995) Mol Cell Biochem 153:161–166

    Article  CAS  PubMed  Google Scholar 

  38. Jackson JK, Min W, Cruz TF, Cindric S, Arsenault L, Von Hoff DD, Degan D, Hunter WL, Burt HM (1997) Br J Cancer 75:1014–1020

    CAS  PubMed  Google Scholar 

  39. Fu Y, Wang Q, Yang XG, Yang XD, Wang K (2008) J Biol Inorg Chem 13:1001–1009

    Article  CAS  PubMed  Google Scholar 

  40. Scatchard G (1949) Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  41. Ninfa AJ, Ballou DP (1998) Fundamental laboratory approaches for biochemistry and biotechnology. Fitzgerald Science Press, Bethesda, pp 247–271

    Google Scholar 

  42. Golczak M, Maeda A, Bereta G, Maeda T, Kiser PD, Hunzelmann S, von Lintig J, Blaner WS, Palczewski K (2008) J Biol Chem 283:9543–9544

    Article  CAS  PubMed  Google Scholar 

  43. Solomaha E, Palfrey C (2005) Biochem J 391:601–611

    Article  CAS  PubMed  Google Scholar 

  44. Nelson DL, Cox MM (2005) Lehninger principles of biochemistry. Freeman, New York

    Google Scholar 

  45. Mansfield P (1984) Magn Reson Med 1:370–386

    Article  CAS  PubMed  Google Scholar 

  46. Foxley S, Fan X, Mustafi D, Yang C, Zamora M, Medved M, Karczmar GS (2008) Phys Med Biol 53:4509–4522

    Article  CAS  PubMed  Google Scholar 

  47. Foxley S, Fan X, Mustafi D, Haney C, Zamora M, Markiewicz E, Medved M, Wood AM, Karczmar GS (2009) Magn Reson Med 61:291–298

    Article  PubMed  Google Scholar 

  48. Nichols JB (2003) University Veterinarian, Florida Atlantic University. For mice: http://www.fauvet.fau.edu/oacm/VetData/Handouts/mouseHO.htm, for rat: http://www.fauvet.fau.edu/oacm/VetData/Handouts/ratHO.htm. Accessed 30 May 2003

  49. Yang XG, Yang XD, Yuan L, Wang K, Crans DC (2004) Pharm Res 21:1026–1033

    Article  CAS  PubMed  Google Scholar 

  50. Barceloux DG (1999) Clin Toxicol 37:265–278

    Article  CAS  Google Scholar 

  51. Fawcett JP, Farquhar SJ, Thou T, Shand BI (1997) Pharmacol Toxicol 80:202–206

    Article  CAS  PubMed  Google Scholar 

  52. McNeill JH (2000) Mol Cell Biochem 208:167–168

    Article  CAS  PubMed  Google Scholar 

  53. Mustafi D, Makinen MW (2005) Inorg Chem 44:5580–5590

    Article  CAS  PubMed  Google Scholar 

  54. Ou H, Yan L, Mustafi D, Makinen MW, Brady MJ (2005) J Biol Inorg Chem 10:874–886

    Article  CAS  PubMed  Google Scholar 

  55. Feng D, Nagy JA, Dvorak AM, Dvorak HF (2000) Microvascular Res 59:24–37

    Article  CAS  Google Scholar 

  56. Heinemann G, Fichtl B, Mentler M, Vogt W (2002) J Inorg Biochem 90:38–42

    Article  CAS  PubMed  Google Scholar 

  57. Purcell M, Neault JF, Malonga H, Arakawa H, Tajmir-Riahi HA (2001) Can J Chem 79:1415–1421

    Article  CAS  Google Scholar 

  58. Lakowicz J (1999) Principles of fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  59. Freire E, Obdulio ML, Straume M (1990) Anal Biochem 62:950A–960A

    CAS  Google Scholar 

  60. Kuperman VY, River JN, Lewis MZ, Lubich LM, Karczmar GS (1995) Magn Reson Med 33:318–325

    Article  PubMed  Google Scholar 

  61. Kuperman VY, Karczmar GS, Blomley MJK, Lewis MZ, Lubich LM, Lipton MJ (1996) J Magn Reson Imaging 6:764–768

    Article  CAS  PubMed  Google Scholar 

  62. Kuperman VY, Alley MT (1999) J Magn Reson Imaging 9:172–176

    Article  CAS  PubMed  Google Scholar 

  63. Solomon GJ, Wu E, Rosen PP (2007) Arch Pathol Lab Med 131:145–148

    PubMed  Google Scholar 

  64. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) AJR Am J Roentgenol 188:586–592

    Article  PubMed  Google Scholar 

  65. Kuo PH (2008) J Am Coll Radiol 5:29–35

    Article  PubMed  Google Scholar 

  66. Dai S, McNeill JH (1994) Pharmacol Toxicol 74:110–115

    Article  CAS  PubMed  Google Scholar 

  67. Dai S, Thmpson KH, McNeill JH (1994) Pharmacol Toxicol 74:101–109

    Article  CAS  PubMed  Google Scholar 

  68. Dai S, Thompson KH, Vera E, McNeill JH (1995) Pharmacol Toxicol 75:265–273

    Article  Google Scholar 

  69. Mukherjee B (2004) Toxicol Lett 150:135–143

    Article  CAS  PubMed  Google Scholar 

  70. Aime S, Chiaussa M, Digilio G, Gianolio E, Terreno E (1999) J Biol Inorg Chem 4:766–774

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Cancer Society, Illinois Division (nos. 06-18, 08-45). This work was also partially supported by grants from the National Institutes of Health (RO1 EB003108), the University of Chicago Cancer Research Center, and the Lynn S. Florsheim MRIS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devkumar Mustafi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustafi, D., Peng, B., Foxley, S. et al. New vanadium-based magnetic resonance imaging probes: clinical potential for early detection of cancer. J Biol Inorg Chem 14, 1187–1197 (2009). https://doi.org/10.1007/s00775-009-0562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0562-0

Keywords

Navigation