Skip to main content
Log in

Immobilization of Candida antarctic Lipase B on Functionalized Ionic Liquid Modified MWNTs

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (MWNTs) were modified by imidazole-based ionic liquids with different alkyl groups. The modified support samples were characterized by scanning transmission electron microscopy, Raman spectra, thermogravimetric analyses, and X-ray photoelectron spectroscopy. The samples were used to immobilize Candida antarctic lipase (CALB) and the influence of alkyl chain length of ionic liquids on enzymatic properties was investigated by the hydrolysis reaction of triacetin. The results revealed that functionalized ionic liquids modification did not destroy the structure of MWNTs. Compared with the immobilized CALB on MWNTs, the immobilized CALB on novel carriers all exhibited higher activity, thermal stability, and reusability. Especially, the activity of MWNTs-IL (8C)-CALB improved 15.23-folds than MWNTs-CALB, meanwhile, after incubation at 70 °C for 20 min, residual enzyme activity of MWNTs-IL (8C)-CALB was 46% of the initial activity, while MWNTs-CALB already lost all activity. Besides, MWNTs-IL (8C)-CALB retained 64.5% of its initial activity after 4 cycles, while MWNTs-CALB retained only 2.12%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kohler, V., & Turner, N. J. (2015). Artificial concurrent catalytic processes involving enzymes. Chemical Communications, 51, 450–464.

    Article  CAS  Google Scholar 

  2. Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485, 185–194.

    Article  CAS  Google Scholar 

  3. Reetz, M. T. (2013). Biocatalysis in organic chemistry and biotechnology: Past, present, and future. Journal of the American Chemical Society, 135, 12480–12496.

    Article  CAS  Google Scholar 

  4. Manoel, E. A., dos Santos, J. C. S., Freire, D. M. G., Rueda, N., & Fernandez-Lafuente, R. (2015). Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 71, 53–57.

    Article  CAS  Google Scholar 

  5. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernandez-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42, 6290–6307.

    Article  CAS  Google Scholar 

  6. Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42, 6223–6235.

    Article  CAS  Google Scholar 

  7. Carlsson, N., Gustafsson, H., Thorn, C., Olsson, L., Holmberg, K., & Akerman, B. (2014). Enzymes immobilized in mesoporous silica: a physical-chemical perspective. Advances in Colloid and Interface Science, 205, 339–360.

    Article  CAS  Google Scholar 

  8. Dicosimo, R., Mcauliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42, 6437–6474.

    Article  CAS  Google Scholar 

  9. Liu, Q., Tian, J. Q., Cui, W., Jiang, P., Cheng, N. Y., Asiri, A. M., & Sun, X. P. (2014). Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 53, 6710–6714.

    Article  CAS  Google Scholar 

  10. Mehra, N. K., Mishra, V., & Jain, N. K. (2014). A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 35, 1267–1283.

    Article  CAS  Google Scholar 

  11. Wan, X. M., Zhang, C., Yu, D. H., Huang, H., & Hu, Y. (2015). Enzyme immobilized on carbon nanotubes. Progress in Chemistry, 27, 1251–1259.

    Google Scholar 

  12. Zhao, H. (2016). Protein stabilization and enzyme activation in ionic liquids: specific ion effects. Journal of Chemical Technology and Biotechnology, 91, 25–50.

    Article  CAS  Google Scholar 

  13. Gao, W. W., Zhang, F. X., Zhang, G. X., & Zhou, C. H. (2015). Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochemical Engineering Joural, 99, 67–84.

    Article  CAS  Google Scholar 

  14. van Rantwijk, F., & Sheldon, R. A. (2007). Biocatalysis in ionic liquids. Chemical Reviews, 107, 2757–2785.

    Article  Google Scholar 

  15. Zou, B., Hu, Y., Cui, F. J., Jiang, L., Yu, D. H., & Huang, H. (2014). Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. Journal of Colloid and Interface Science, 417, 210–216.

    Article  CAS  Google Scholar 

  16. Zou, B., Hu, Y., Yu, D. H., Xia, J. J., Tang, S. S., Liu, W. M., & Huang, H. (2010). Immobilization of porcine pancreatic lipase onto ionic liquid modified mesoporous silica SBA-15. Biochemical Engineering Journal, 53, 150–153.

    Article  CAS  Google Scholar 

  17. Hu, Y., Tang, S. S., Jiang, L., Zou, B., Yang, J., & Huang, H. (2012). Immobilization of Burkholderia cepacia lipase on functionalized ionic liquids modified mesoporous silica SBA-15. Process Biochemistry, 47, 2291–2299.

    Article  CAS  Google Scholar 

  18. Zou, B., Hu, Y., Jiang, L., Jia, R., & Huang, H. (2013). Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via ionic bonding and cross-linking method. Industrial & Engineering Chemistry Research, 52, 2844–2851.

    Article  CAS  Google Scholar 

  19. Wu, Q., Soni, P., & Reetz, M. T. (2013). Laboratory evolution of Enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope. Journal of the American Chemical Society, 135, 1872–1781.

    Article  CAS  Google Scholar 

  20. Boros, Z., Weiser, D., Márkus, M., Abaháziová, E., Magyar, Á., Tomin, A., Koczka, B., Kovács, P., & Poppe, L. (2013). Hydrophobic adsorption and covalent immobilization of Candida antarctica lipase B on mixed-function-grafted silica gel supports for continuous-flow biotransformations. Process Biochemistry, 48, 1039–1047.

    Article  CAS  Google Scholar 

  21. Tan, H. S., Feng, W., & Ji, P. J. (2012). Lipase immobilized on magnetic multi-walled carbon nanotubes. Bioresource Technology, 115, 172–176.

    Article  CAS  Google Scholar 

  22. Park, M. J., Lee, J. K., Lee, B. S., Lee, Y. W., Choi, I. S., & Lee, S. G. (2006). Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: effect of anions on solubility. Chemistry of Materials, 18, 1546–1551.

    Article  CAS  Google Scholar 

  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Pourjavadi, A., & Doulabi, M. (2014). Preparation and evaluation of a polymeric gel containing ionic liquid-functionalized MWNTs as a novel class of organic solvent absorbent. Journal of Polymer Science Part A: Polymer Chemistry, 52, 3166–3172.

    Article  CAS  Google Scholar 

  25. Yu, B., Zhou, F., Mu, Z. G., Liang, Y. M., & Liu, W. M. (2006). Tribological properties of ultra-thin ionic liquid films on single-crystal silicon wafers with functionalized surfaces. Tribology International, 39, 879–887.

    Article  CAS  Google Scholar 

  26. Rastian, Z., Khodadadi, A. A., Guo, Z., Vahabzadeh, F., & Mortazavi, Y. (2016). Plasma functionalized multiwalled carbon nanotubes for immobilization of Candida antarctica lipase B: production of biodiesel from methanolysis of rapeseed oil. Applied Biochemistry and Biotechnology, 178, 974–989.

    Article  CAS  Google Scholar 

  27. Lu, S., He, J., & Guo, X. (2010). Architecture and performance of mesoporous silica-lipase hybrids via non-covalent interfacial adsorption. AICHE Journal, 56, 506–514.

    CAS  Google Scholar 

  28. Cao, X., Zhang, R., Tan, W. M., Wei, C., Wang, J., Liu, Z. M., Chen, K. Q., & Ouyang, P. K. (2016). Plasma treatment of multi-walled carbon nanotubes for lipase immobilization. Korean Journal of Chemical Engineering, 33, 1653–1658.

    Article  CAS  Google Scholar 

  29. Gao, S. L., Wang, W. W., Wang, Y. J., Luo, G. S., & Dai, Y. Y. (2010). Influence of alcohol treatments on the activity of lipases immobilized on methyl-modified silica aerogels. Bioresource Technology, 101, 7231–7238.

    Article  CAS  Google Scholar 

  30. Kaar, J. L., Jesionowski, A. M., Berberich, J. A., Moulton, R., & Russell, A. J. (2003). Impact of ionic liquid physical properties on lipase activity and stability. Journal of the American Chemical Society, 125, 4125–4131.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21676143), Qing Lan Project, and the National Science Fund for Distinguished Young Scholars (No. 21225626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Tang, S., Xiang, X. et al. Immobilization of Candida antarctic Lipase B on Functionalized Ionic Liquid Modified MWNTs. Appl Biochem Biotechnol 183, 807–819 (2017). https://doi.org/10.1007/s12010-017-2465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2465-9

Keywords

Navigation