Skip to main content
Log in

Optimization of Bioelectricity Generation in Fed-Batch Microbial Fuel Cell: Effect of Electrode Material, Initial Substrate Concentration, and Cycle Time

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Effective wastewater treatment and electricity generation using dual-chamber microbial fuel cell (MFC) will require a better understanding of how operational parameters affect system performance. Therefore, the main aim of this study is to investigate the bioelectricity production in a dual-chambered MFC-operated batch mode under different operational conditions. Initially, platinum (Pt) and mixed metal oxide titanium (Ti-TiO2) electrodes were used to investigate the influence of the electrode materials on the power generation at initial dissolved organic carbon (DOC) concentration of 400 mg/L and cycle time of 15 days. MFC equipped with Ti-TiO2 electrode performed better and was used to examine the effect of influent DOC concentration and cycle time on MFC performance. Increasing influent DOC concentration resulted in improving electricity generation, corresponding to a 1.65-fold increase in power density. However, decrease in cycle time from 15 to 5 days adversely affected reactor performance. Maximum DOC removal was 90 ± 3 %, which was produced at 15-day cycle time with an initial DOC of 3,600 mg/L, corresponding to maximum power generation of about 7,205 mW/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim, M. H., Iwuchukwu, I. J., Wang, Y., Shin, D., Sanseverino, J., & Frymier, P. (2011). Journal of Power Sources, 196, 1909–1914.

    Article  CAS  Google Scholar 

  2. Wei, L. L., Yuan, Z. L., Cui, M. J., Han, H. L., & Shen, J. Q. (2012). International Journal of Hydrogen Energy, 37, 1067–1073.

    Article  CAS  Google Scholar 

  3. Digman, B., & Kim, D. S. (2008). Environmental Progress, 27(4), 524–537.

    Article  CAS  Google Scholar 

  4. Logan, B. E., & Elimelech, M. (2012). Nature, 48, 313–319.

    Article  Google Scholar 

  5. Logan, B., Hamelers, B., Rozendal, R., Schroeder, U., Keller, J., Freguiac, S., et al. (2006). Environmental Science and Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  6. Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). Journal of Power Sources, 196, 4427–4435.

    Article  CAS  Google Scholar 

  7. Zhao, Y., Watanabe, K., Nakamura, R., Mori, S., Liu, H., Ishii, K., et al. (2010). Chemistry A European Journal, 16, 4982–4985.

    Article  CAS  Google Scholar 

  8. Zhang, G. D., Zhao, Q. L., Jiao, Y., Zhang, J. N., Jiang, J. Q., Ren, N. Q., et al. (2011). Journal of Power Sources, 196(15), 6036–6041.

    Article  CAS  Google Scholar 

  9. Ozkaya, B., Akoglu, B., Karadag, D., Aci, G., Taksan, E., & Hasar, H. (2012). Bioprocess and Biosystems Engineering, 35, 1219–1227.

    Article  CAS  Google Scholar 

  10. Tremouli, A., Antonopoulou, G., Bebelis, S., & Lyberatos, G. (2013). Bioresource Technology, 131, 380–389.

    Article  CAS  Google Scholar 

  11. Logan, B. E. (2005). Water Science Technology, 52(1–2), 31–37.

    CAS  Google Scholar 

  12. Gonzalez Del Compo, A., Lobato, J., Canizares, P., Rodrigo, M. A., & Fernandez Moralez, F. J. (2013). Applied Energy, 101, 213–217.

    Article  Google Scholar 

  13. Karadag, D. (2011). International Journal of Hydrogen Energy, 36, 458–465.

    Article  CAS  Google Scholar 

  14. Qiao, Y., Li, C. M., Bao, S. J., & Bao, Q. L. (2007). Journal of Power Sources, 170(1), 79–84.

    Article  CAS  Google Scholar 

  15. Qiao, Y., Bao, S. J., Li, C. M., Cui, X. Q., Lu, Z. S., & Guo, J. (2008). Acs Nano, 2(1), 113–119.

    Article  CAS  Google Scholar 

  16. Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., et al. (2003). Biosensors and Biolelectronics, 18, 327–334.

    Article  CAS  Google Scholar 

  17. Zhang, J., Zheng, P., Zhang, M., Chen, H., Chen, T., Xie, Z., et al. (2013). Bioresource Technology, 149, 44–50.

    Article  CAS  Google Scholar 

  18. Ge, Z., Ping, Q., Xiao, L., & He, Z. (2013). Desalination, 312, 52–59.

    Article  CAS  Google Scholar 

  19. Gálvez, A., Greenman, J., & Ieropoulos, I. (2009). Bioresource Technology, 100(21), 5085–5091.

    Article  Google Scholar 

  20. Ozkaya, B., Cetinkaya, A. Y., Cakmakcı, M., Karadag, D., & Sahinkaya, E. (2013). Bioprocess and Biosystems Engineering, 36, 399–405.

    Article  CAS  Google Scholar 

  21. Greenman, J., Gálvez, A., Giusti, L., & Ieropoulos, I. (2009). Enzyme and Microbial Technology, 44(2), 112–119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevser Cirik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirik, K. Optimization of Bioelectricity Generation in Fed-Batch Microbial Fuel Cell: Effect of Electrode Material, Initial Substrate Concentration, and Cycle Time. Appl Biochem Biotechnol 173, 205–214 (2014). https://doi.org/10.1007/s12010-014-0834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0834-1

Keywords

Navigation