Skip to main content
Log in

Bioelectricity production using a new electrode in a microbial fuel cell

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Electrode materials play a key role in enhancing the electricity generation in the microbial fuel cell (MFC). In this study, a new material (Ti-TiO2) was used as an anode electrode and compared with a graphite electrode for electricity generation. Current densities were 476.6 and 31 mA/m2 for Ti-TiO2 and graphite electrodes, respectively. The PCR-DGGE analysis of enriched microbial communities from estuary revealed that MFC reactors were dominated by Shewanella haliotis, Enterococcus sp., and Enterobacter sp. Bioelectrochemical kinetic works in the MFC with Ti-TiO2 electrode revealed that the parameters by non-linear curve fitting with the confidence bounds of 95% gave good fit with the kinetic constants of η (difference between the anode potential and anode potential giving one-half of the maximum current density) = 0.35 V, K s (Half-saturation constant) = 2.93 mM and J max = 0.39 A/m2 for T = 298 K and F = 96.485 C/mol-e. From the results observed, it is clear that Ti-TiO2 electrode is a promising candidate for electricity generation in MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Article  Google Scholar 

  2. Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS, Bao J (2008) Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2:113–119

    Article  CAS  Google Scholar 

  3. Pant D, Bogaerta GV, Dielsa L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  Google Scholar 

  4. Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100:717–723

    Article  CAS  Google Scholar 

  5. Sun M, Zhang F, Tong ZH, Sheng GP, Chen YZ, Zhao Y, Chen YP, Zhou SY, Liu G, Tian YC, Yu HQ (2010) A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosens Bioelec 26:338–343

    Article  CAS  Google Scholar 

  6. Zhang BG, Zhou SG, Zhao HZ, Shi CH, Kong LC, Sun JJ, Yang Y, Ni JR (2010) Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng 33:187–194

    Article  CAS  Google Scholar 

  7. Li CM (2007) Advanced microbial fuel cell development, miniaturization and energy and power density enhancement. School of Chemical and Biomedical Engineering Nanyang Technological University, Singapore

  8. Kim IS, Chae KJ, Choi MJ, Verstraete W (2008) Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ Eng Res 13:51–65

    Article  Google Scholar 

  9. Heijne A, Hamelers HVM, Saakes M, Buisman CJN (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53:5697–5703

    Article  Google Scholar 

  10. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Advan 25:464–482

    Article  CAS  Google Scholar 

  11. Schröder U, Niessen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Ed 42:2880–2883

    Article  Google Scholar 

  12. Song TS, Yan ZS, Zhao ZW, Jiang HL (2011) Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess Biosyst Eng 34:621–627

    Article  CAS  Google Scholar 

  13. Zhu N, Cheni X, Zhang T, Wu P, Li P, Wu J (2011) Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresour Technol 120:422–426

    Article  Google Scholar 

  14. Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment–water interface II Kinetic activity of anode materials. Biosens Bioelec 21:2058–2063

    Article  CAS  Google Scholar 

  15. Park DH, Zeikus JG (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnol 59:58–61

    Article  CAS  Google Scholar 

  16. Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536

    Article  CAS  Google Scholar 

  17. Morris JM, Jin S, Wang JQ, Zhu CZ, Urynowicz MA (2007) Lead dioxide as an alternative catalyst to platinium in microbial fuel cells. Electrochem Commun 9:1730–1734

    Article  CAS  Google Scholar 

  18. Karadag D (2011) Anaerobic H2 production at elevated temperature (60°C) by enriched mixed consortia from mesophilic sources. Int J Hydrogen Energy 36:458–465

    Article  CAS  Google Scholar 

  19. Ozkaya B, Karadag D, Akoglu B, Acı G, Taskan E, Hasar H (2010) Electricity generation in MFC using selective membrane, pp 1222–1227, IWA regional conference and exhibition 18–22 October 2010 on membrane technology and water reuse Istanbul-Turkey

  20. Lee HS, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Article  CAS  Google Scholar 

  21. Marcus AK, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98:1171–1182

    Article  CAS  Google Scholar 

  22. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial Fuel Cells. Methodol Technol Environ Sci Technol 40(17):5181–5190

    Article  CAS  Google Scholar 

  23. Hu Z (2008) Electricity generation by a baffle-chamber membraneless microbial fuel cell. J Power Source 179:27–33

    Article  CAS  Google Scholar 

  24. Choi MJ, Chae KJ, Ajayi FF, Kim KY, Yu HW, Cw Kim, Kim IS (2011) Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresour Technol 102:298–303

    Article  CAS  Google Scholar 

  25. Lu N, Sg Zhou, Zhuang L, Jt Zhang, Jr Ni (2009) Electricity generation from starch processing wastewater using microbial fuel cell. Biochem Eng J 43:246–251

    Article  CAS  Google Scholar 

  26. Antonopoulou G, Stamatelatou K, Bebelis S, Lyberatos G (2010) Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem Eng J 50:10–15

    Article  CAS  Google Scholar 

  27. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267

    Article  CAS  Google Scholar 

  28. Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525

    Article  CAS  Google Scholar 

  29. Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98:2568–2577

    Article  CAS  Google Scholar 

  30. Kim MH, Iwuchukwu IJ, Wang Y, Shin D (2011) An analysis of the performance of an anaerobic dual anode-chambered microbial fuel cell. J Power Source 196:1909–1914

    Article  CAS  Google Scholar 

  31. Huang L, Zeng RJ, Angelidaki I (2008) Electricity production from xylose using a mediator-less microbial fuel cell. Bioresour Technol 99:4178–4184

    Article  CAS  Google Scholar 

  32. Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Source 175(1):196–200

    Article  CAS  Google Scholar 

  33. Li Z, Yao L, Kong L, Liu H (2008) Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresour Technol 99:1650–1655

    Article  CAS  Google Scholar 

  34. Min B, Kim JR, Oh SE, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  CAS  Google Scholar 

  35. Catal T, Xu S, Li K, Bermek H, Liu H (2008) Electricity generation from polyalcohols in single-chamber microbial fuel cell. Biosensor Bioelec 24:849–854

    Article  CAS  Google Scholar 

  36. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate. Appl Environ Microbiol 70:5373–5382

    Article  CAS  Google Scholar 

  37. Zhang J, Zhang E, Scott K, Burgess JG. (Unpublished) Electricity production by consortium bacterial biofilms enriched from estuarine sediments in microbial fuel cell and its microbial communities

  38. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  Google Scholar 

  39. Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbial Cell Physiol 77:393–402

    CAS  Google Scholar 

  40. Choo YF, Lee JY, Chang IS, Kim BH (2006) Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J Microbiol Biotechnol 16(9):1481–1484

    CAS  Google Scholar 

  41. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1458–1555

    Article  Google Scholar 

  42. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ish S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103(30):11358–11363

    Article  CAS  Google Scholar 

  43. Kim GT, Hyun MS, Chang IS, Kim HJ, Park HS, Kim BH, Kim SD, Wimpenny JW, Weightman AJ (2005) Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J Appl Microbiol 99(4):978–987

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gracefully acknowledge the financial support from TÜBİTAK, Project Number 109Y269. The microbial community was analyzed at the Environmental Biotechnology Laboratory of Firat University (Elazığ, Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bestamin Ozkaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozkaya, B., Akoglu, B., Karadag, D. et al. Bioelectricity production using a new electrode in a microbial fuel cell. Bioprocess Biosyst Eng 35, 1219–1227 (2012). https://doi.org/10.1007/s00449-012-0709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0709-1

Keywords

Navigation