Skip to main content
Log in

Biomass Composition, Lipid Characterization, and Metabolic Profile Analysis of the Fed-Batch Fermentation Process of Two Different Docosahexanoic Acid Producing Schizochytrium sp. Strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Growth and fermentation characteristics, biomass composition, lipid characterization and metabolic profiling analysis of two different Schizochytrium sp. strains, the original strain and the industrial adaptive strain, were investigated in the fed-batch fermentation process. The final cell biomass, total lipids content, docosahexanoic acid (DHA) content and DHA productivity of the adaptive strain were much higher than those of the original strain. The metabolic distinctions which extensively existed between these two strains were revealed by the score plot of principal component analysis. In addition, potential biomarkers responsible for discriminating different strains were identified as myo-inositol, histidine, alanine, asparagine, cysteine, and oxalic acid. These findings provided new insights into the industrial strain screening and further improvement of DHA production by Schizochytrium sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Metz, J. G., Roessler, P., Facciotti, D., et al. (2001). Science, 293, 290–293.

    Article  CAS  Google Scholar 

  2. Lauritzen, L., Hansen, H., Jorgensen, M. H., et al. (2001). Progress in Lipid Research, 40, 1–94.

    Article  CAS  Google Scholar 

  3. Nordoy, A., Marchioli, R., Arnesen, H., et al. (2001). Lipids, 36, 127–129.

    Article  Google Scholar 

  4. Ratledge, C. (2004). Biochimie, 86, 807–815.

    Article  CAS  Google Scholar 

  5. Sijtsma, L., & de Swaaf, M. E. (2004). Applied Microbiology and Biotechnology, 64, 146–153.

    Article  CAS  Google Scholar 

  6. Yokochi, T., Honda, D., Higashihara, T., et al. (1998). Applied Microbiology and Biotechnology, 49, 72–76.

    Article  CAS  Google Scholar 

  7. Ganuza, E., Anderson, A. J., & Ratledge, C. (2008). Biotechnology Letters, 30, 1559–1564.

    Article  CAS  Google Scholar 

  8. Ren, L. J., Ji, X. J., Huang, H., et al. (2010). Applied Microbiology and Biotechnology, 87, 1649–1656.

    Article  CAS  Google Scholar 

  9. Unagul, P., Assantachai, C., Phadungruengluij, S., et al. (2007). Bioresource Technology, 98, 281–287.

    Article  CAS  Google Scholar 

  10. Baker, M. (2011). Nature Methods, 8, 117–121.

    Article  CAS  Google Scholar 

  11. Duportet, X., Aggio, R. B. M., Carneiro, S., et al. (2012). Metabolomics, 8, 410–421.

    Article  CAS  Google Scholar 

  12. Han, T. L., Cannon, R. D., & Villas-Bôas, S. G. (2012). Metabolomics, 8, 1204–1217.

    Article  CAS  Google Scholar 

  13. Raamsdonk, L. M., Teusink, B., Broadhurst, D., et al. (2001). Nature Biotechnology, 19, 45–50.

    Article  CAS  Google Scholar 

  14. Qu, L., Ji, X. J., Ren, L. J., et al. (2011). Letters in Applied Microbiology, 52, 22–27.

    Article  CAS  Google Scholar 

  15. Pleissner, D., & Eriksen, N. T. (2012). Biotechnology Bioengineering, 109, 2005–2016.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  17. Cakmak, T., Angun, P., Demiray, Y. E., et al. (2012). Biotechnology Bioengineering, 109, 1947–1957.

    Article  CAS  Google Scholar 

  18. Fan, K. W., Jiang, Y., Fan, Y. W., et al. (2007). Journal of Agricultural and Food Chemistry, 55, 2906–2910.

    Article  CAS  Google Scholar 

  19. Dhara, R., Bhattacharyya, D. K., & Ghosh, M. (2010). Journal of Oleo Science, 59, 169.

    Article  CAS  Google Scholar 

  20. Hart, D. J., & Scott, K. J. (1995). Food Chemistry, 4, 101–111.

    Article  Google Scholar 

  21. Ding, M. Z., Zhou, X., & Yuan, Y. J. (2009). Metabolomics, 6, 42–55.

    Article  Google Scholar 

  22. Ding, M. Z., Tian, H. C., Cheng, J. S., et al. (2009). Journal of Biotechnology, 144, 279–286.

    Article  CAS  Google Scholar 

  23. Strelkov, S., Elstermann, V. M., & Schomburg, D. (2004). Biological Chemistry, 385, 853–861.

    Article  CAS  Google Scholar 

  24. Kind, T., Tolstikov, V., Fiehn, O., et al. (2007). Analytical Biochemistry, 363, 185–195.

    Article  CAS  Google Scholar 

  25. Yaguchi, T., Tanaka, S., Yokochi, T., et al. (1997). Journal of the American Oil Chemists' Society, 74, 1431–1434.

    Article  CAS  Google Scholar 

  26. Perveen, Z., Ando, H., Ueno, A., et al. (2006). Biotechnology Letters, 28, 197–202.

    Article  CAS  Google Scholar 

  27. Wang, G., & Wang, T. (2012). Journal of the American Oil Chemists' Society, 89, 135–143.

    Article  CAS  Google Scholar 

  28. Jennings, D. H. (1984). Advances in Microbial Physiology, 25, 149–193.

    Article  CAS  Google Scholar 

  29. Ding, M. Z., Li, B. Z., Cheng, J. S., et al. (2010). OMICS, 14, 553–561.

    Article  CAS  Google Scholar 

  30. Jozefczuk, S., Klie, S., & Catchpole, G. (2010). Molecular Systems Biology, 6, 364.

    Article  Google Scholar 

  31. Mandelstam, J. (1963). Annal Nyame Academy of Sciences, 102, 621–636.

    Article  CAS  Google Scholar 

  32. Willetts, N. S. (1967). The Biochemical Journal, 103, 453.

    CAS  Google Scholar 

  33. Panagiotou, G., Villas-Bôas, S. G., Christakopoulos, P., et al. (2005). Journal of Biotechnology, 115, 425–434.

    Article  CAS  Google Scholar 

  34. Zulak, K. G., Weljie, A. M., Vogel, H. J., et al. (2008). BMC Plant Biology, 8, 5–23.

    Article  Google Scholar 

  35. Kubicek, C. P., Schreferl-Kunar, G., Wöhrer, W., et al. (1988). Applied and Environmental Microbiology, 55, 633–637.

    Google Scholar 

  36. Ruijter, G. J. G., van de Vondervoort, P. J. I., & Visser, J. (1999). Microbiology, 145, 2569–2576.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (no. 2011CBA00802), the Scientific Research Project for Post-graduate in Jiangsu Province (no. CXLX11_0366), the Natural Science Foundation of Jiangsu Province (no. BK2012424), National Science Foundation for Distinguished Young Scholars of China (No. 21225626), the National Science and Technology Pillar Program (no. 2011BAD23B03), and the National High Technology Research and Development Program of China (no. 2012AA021704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Additional information

Liang Qu and Lu-Jing Ren contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, L., Ren, LJ., Li, J. et al. Biomass Composition, Lipid Characterization, and Metabolic Profile Analysis of the Fed-Batch Fermentation Process of Two Different Docosahexanoic Acid Producing Schizochytrium sp. Strains. Appl Biochem Biotechnol 171, 1865–1876 (2013). https://doi.org/10.1007/s12010-013-0456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0456-z

Keywords

Navigation