Skip to main content
Log in

Steady- and Unsteady-State Determination of the Water Vapor Permeance (WVP) of Polyethylene Film to Estimate the Moisture Gain of Packed Dry Mango

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The water vapor permeance (WVP; g m−2 d−1 Pa−1) of packaging films quantifying the water vapor transfer rate between foods and its surroundings is usually determined in units operating under steady-state conditions that do not necessarily reflect food handling scenarios. This study evaluated the determination of the WVP of a polyethylene (PE) film by steady-state method ASTM F1249-06 using a permeability cell and unsteady-state method ASTM E96/E96M in which 102 vacuum-sealed PE bags containing silica gel were stored (37.8 °C, 75% relative humidity) and weighed over 25 days. Average steady-state WVP (2.935 ± 0.365 × 10−3, n = 4) fell within the 95% quantiles of unsteady-state WVP values (1.818–3.183 × 10−3, n = 2142). Moisture uptake of dehydrated mango stored at 37.8 °C and 75% relative humidity was predicted with WVP values obtained by both methods. Predictions were validated by monitoring over 25 days the weight gain of 100 PE bags with dry mango. Experimental moisture averages during storage fell within one standard deviation of predictions using the unsteady-state WVP (R 2 = 0.974). The same was observed only until day 15 for predictions obtained with the steady-state WVP. Calculations for days 20–25 overestimated the moisture uptake by 6.0–7.2%, resulting in registered R 2 = 0.924. The unsteady-state WVP determination is low-cost, uses large numbers of film samples, and allowed more accurate predictions of dry mango moisture uptake. Knowledge of the moisture uptake controlled by the film WVP is essential when predicting the safety and quality changes limiting the shelf-life of foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AOAC Official Method 934.06. (1996). Moisture in dried fruits. Gaithersburg: AOAC International, http://www.aoac.org.

    Google Scholar 

  • Aung, M., & Chang, Y. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172–184.

  • ASTM Standard E96/E96M. (2008). Test method for water vapor transmission of materials, E96/E96M. In Annual book of ASTM. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • ASTM Standard F1249-06. (2006). Standard test method for water vapour transmission rate through plastic film and sheeting using a modulated infrared sensor. West Conshohocken: American Society for Testing Materials International, http://www.astm.org.

    Google Scholar 

  • Caballero-Cerón, C. (2012). Evaluación de propiedades higroscópicas y de transición vítrea en frutas deshidratadas y su aplicación para el modelado y predicción de la vida media utilizando el método de Monte Carlo. Escuela de Ingenieria y Tecnologias de Información, Tecnológico de Monterrey. Monterrey: Campus Monterrey.

  • Caballero-Cerón, C, Serment-Moreno, V, Velazquez, G, Torres, J. A & Welti-Chanes, J (2017) Hygroscopic properties and glass transition of dehydrated mango, apple and banana. Journal of Food Science and Technology. In review.

  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technology., 4(6), 849–875.

    Article  CAS  Google Scholar 

  • Del Nobile, M. A., Buonocore, G. G., Limbo, S., & Fava, P. (2003). Shelf life prediction of cereal-based dry foods packed in moisture-sensitive films. Journal of Food Science., 68(4), 1292–1300.

    Article  Google Scholar 

  • Del Nobile, M. A., Buonocore, G. G., Dainelli, D., & Nicolais, I. (2004). A new approach to predict the water transport properties of multilayer films intended for food-packaging applications. Journal of Food Science., 69(3), 85–90.

    Google Scholar 

  • Escobedo-Avellaneda, Z., Velazquez, G., Torres, J. A., & Welti-Chanes, J. (2012). Inclusion of the variability of model parameters on shelf-life estimations for low and intermediate moisture vegetables. LWT - Food Science and Technology., 47(2), 364–370.

    Article  CAS  Google Scholar 

  • Hu, Y., Topolkaraev, V., Hiltner, A., & Baer, E. (2001). Measurement of water vapor transmission rate in highly permeable films. Journal of Applied Polymer Science., 81, 1624–1633.

    Article  CAS  Google Scholar 

  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology., 5(6), 2058–2076.

    Article  Google Scholar 

  • Kurek, M., Ščetar, M., Voilley, A., Galić, K., & Debeaufort, F. (2012). Barrier properties of chitosan coated polyethylene. Journal of Membrane Science., 403, 162–168.

    Article  Google Scholar 

  • Labuza, T. P. (1982). Shelf-life dating of foods. Westport: Food & Nutrition Press, Inc..

    Google Scholar 

  • López-Malo, A, Palou, E & Argaiz, A (1994) Measurement of water activity of saturated salt solutions at various temperatures. In: Argaiz A, López-Malo A, Palou E & Corte P (eds) Proceeding of the Poster Session, International Symposium on the Properties of Water, Practicum II, Cholula, Puebla, México, 1994. Universidad de las Américas at Puebla, pp 113–116.

  • Marsh, K., & Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. Journal of Food Science, 72(3), R39–R55.

    Article  CAS  Google Scholar 

  • McLeod, M. A., & Mier, R. (2004). Film blowing of a narrow molecular weight polyethylene. Journal of Plastic Film and Sheeting, 20(4), 261–274.

    Article  CAS  Google Scholar 

  • Moyls, A. L. (1998). Whole-bag (water) method for determining water vapor transmission rate of polyethylene films. Transactions of the ASAE, 41(5), 1447–1451.

    Article  CAS  Google Scholar 

  • Moyls, A. L., McKenzie, D.-L., Hocking, R. P., Toivonen, P. M. A., Delaquis, P., Girard, B., & Mazza, G. (1998). Variability in O2, CO2, and H2O transmission rates among commercial polyethylene films for modified atmosphere packaging. Transactions of the ASAE, 41(5), 1441–1446.

    Article  CAS  Google Scholar 

  • Risbo, J. (2003). The dynamics of moisture migration in packaged multi-component food systems: shelf life predictions for a cereal–raisin system. Journal of Food Engineering, 58, 239–246.

    Article  Google Scholar 

  • Siracusa, V (2012) Food packaging permeability behaviour: a report. International Journal of Polymer Science. 2012(Article ID 302029), 1–11.

  • Taoukis, P. S., El Meskine, A., & Labuza, T. P. (1988). Moisture transfer and shelf life of packaged foods. In J. H. Hotchkiss (Ed.), Food and packaging interactions. ACS symposium series, 365 (pp. 244–261). Washington, DC: ACS Publications.

    Google Scholar 

  • Taoukis, P. S., El Meskine, A., & Labuza, T. P. (1989). Moisture transfer and shelf life of packaged foods. In J. H. Hotchkiss (Ed.), Food and packaging interactions. ACS symposium series, 365 (pp. 243–261). Washington, DC: American Chemical Society.

    Google Scholar 

  • Torres, J., & Wu, X. (2015). Probabilistic engineering to determine shelf-life and food safety in process design and product formulation. In Curso Internacional sobre Vida Útil e Inocuidad, Santiago, Chile, June 22–23 2015. GCL Capacita S.A.

    Google Scholar 

  • Yam, K. L. (2009). Gas permeation of packaging materials. In K. L. Yam (Ed.), The Wiley encyclopedia of packaging technology (3rd ed., pp. 551–555). Hoboken: John Wiley & Sons, Inc..

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Tecnológico de Monterrey (research chair funds GEE 1A01001 and CDB081). Centro de Investigación en Química Aplicada (CIQA, Saltillo, Mexico) is gratefully acknowledged for the technical assistance provided for the determination of WVTR values.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antonio Torres.

Additional information

Salgado is currently at the Department of Food Science and Nutrition, University of Leeds, Leeds, UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, D., Serment-Moreno, V., Ulloa, P.A. et al. Steady- and Unsteady-State Determination of the Water Vapor Permeance (WVP) of Polyethylene Film to Estimate the Moisture Gain of Packed Dry Mango. Food Bioprocess Technol 10, 1792–1797 (2017). https://doi.org/10.1007/s11947-017-1951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1951-y

Keywords

Navigation