Skip to main content
Log in

Development of Edible Films and Coatings with Antimicrobial Activity

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Over the last years, considerable research has been conducted to develop and apply edible films and coatings made from a variety of agricultural commodities and/or wastes of food product industrialization. Such biopolymers include polysaccharides, proteins, and their blends. These materials present the possibility of being carriers of different additives, such as antimicrobial, antioxidant, nutraceuticals, and flavorings agents. In particular, the use of edibles films and coatings containing antimicrobials has demonstrated to be a useful tool as a stress factor to protect foodstuff against spoilage flora and to decrease the risk of pathogen growth. The more commonly antimicrobials used are organic acids, chitosan, nisin, the lactoperoxidase system, and some plant extracts and their essential oils. For the selection of an antimicrobial, it must be considered the effectiveness against the target microorganism and also the possible interactions among the antimicrobial, the film-forming biopolymer, and other food components present. These interactions can modify the antimicrobial activity and the characteristics of the film being these key factors for the development of antimicrobial films and coatings. The main objective of this article is to review the bibliography of the last years concerning the main hydrocolloids and antimicrobials used for developing edible films and coatings, the methods used to evaluate the antimicrobial activity, the applications and the legislation concerning edible films and coatings. Also, the different strategies related to the modification of structural characteristics and the future trends in the development are discussed. The information update will help to improve the design, development, and application of edible films and coatings tending to increase the safety and quality of food products and to prepare for food legislation changes that might be necessary while identifying future trends concerning a better functionality of edible films thought as a stress factor for lengthening shelf life of food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Science and Technology, 43, 837–842.

    Article  CAS  Google Scholar 

  • Anker, M., Berntsen, J., Hermansson, A. M., & Stading, M. (2001). Improved water vapour barrier of whey protein films by addition of an acetylated monoglyceride. Innovative Food Science & Emerging Technologies, 3, 81–92.

    Article  Google Scholar 

  • Araya, L., Clavijo, R., & Herrera, C. (2006). Capacidad antioxidante de frutas y verduras cultivados en Chile. Archivos Latinoamericanos de Nutrición, 56(4), 361–365.

    Google Scholar 

  • Artharn, A., Prodpran, T., & Benjakul, S. (2009). Round scad protein-based film: storage stability and its effectiveness for shelf-life extension of dried fish powder. LWT Food Science and Technology, 42(7), 1238–1244.

    Article  CAS  Google Scholar 

  • Arvanitoyannis, I. S. (2008). The use of chitin and chitosan for food packaging applications. In E. Chiellini (Ed.), “Environmentally compatible food packaging” (pp. 137–158). Cambridge: CRC-Woodhead Publishing.

    Chapter  Google Scholar 

  • Arvanitoyannis, I., Nakayama, A., & Aiba, S. (1998). Chitosan and gelatin based edible films: State diagrams, mechanical and permeation properties. Carbohydrate Polymers, 37, 371–382.

    Article  CAS  Google Scholar 

  • Averous, L., Fringant, C., & Moro, L. (2001). Starch base biodegradable materials suitable for thermoforming packaging. Polymer, 42, 6565–6572.

    Article  CAS  Google Scholar 

  • Aydinli, M., Tutas, M., & Bozdemir, Ö. A. (2004). Mechanical and light transmittance properties of locust bean gum based edible films. Turkish Journal of Chemistry, 28, 163–171.

    CAS  Google Scholar 

  • Ayranci, E., & Tunc, S. (2003). A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chemistry, 80, 423–431.

    Article  CAS  Google Scholar 

  • Bagamboula, C. F., Uyttendaele, M., & Debevere, J. (2004). Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiology, 21, 33–42.

    Article  CAS  Google Scholar 

  • Belalia, R., Grelier, S., Benaissa, M., & Coma, V. (2008). New bioactive biomaterials based on quaternized chitosan. Journal of Agricultural and Food Chemistry, 56(5), 1582–1588.

    Article  CAS  Google Scholar 

  • Beverlya, R. L., Janesa, M. E., Prinyawiwatkulaa, W., & Nob, H. K. (2008). Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiology, 25, 534–537.

    Article  CAS  Google Scholar 

  • Bico, S. L. S., Raposo, M. F. J., Morais, R. M. S. C., & Morais, A. M. M. B. (2009). Combined effects of chemical dip and/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana. Food Control, 20, 508–514.

    Article  CAS  Google Scholar 

  • Bifani, V., Ramírez, C., Ihl, M., Rubilar, M., García, A., & Zaritzky, N. (2007). Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films. LWT Food Science and Technology, 40(8), 1473–1481.

    Article  CAS  Google Scholar 

  • Bourtoom, T. (2008). Edible films and coatings: Characteristics and properties. International Food Research Journal, 15(3), 237–248.

    Google Scholar 

  • Bourtoom, T. (2009). Review article. Edible protein films: Properties enhancement. International Food Research Journal, 16, 1–9.

    CAS  Google Scholar 

  • Brindle, L. P., & Krochta, J. M. (2008). Physical properties of whey protein—hydroxypropyl methylcellulose blend edible films. Journal of Food Science, 73(9), E446–E454.

    Article  CAS  Google Scholar 

  • Buonocore, G. G., Del Nobile, M., Panizza, A., Battaglia, G., & Nicolais, L. (2003). Modeling the lysozime release kinetics from antimicrobial films intended for food packaging applications. Journal of Food Science, 68(4), 1365–1370.

    Article  CAS  Google Scholar 

  • Buonocore, G. G., Conte, A., & Del Nobile, M. A. (2005). Use of a mathematical model to describe the barrier properties of edible films. Journal of Food Science, 70(2), 142–147.

    Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–253.

    Article  CAS  Google Scholar 

  • Cagri, A., Ustunol, Z., & Ryser, E. T. (2001). Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-amino benzoic or sorbic acids. Journal of Food Science, 66(6), 865–870.

    Article  CAS  Google Scholar 

  • Carulo M. F. & Kieckbusch T. G. (2005). Water vapor permeability in biodegradable calcium Alginate films: effect of lipid addition. In: proceedings of the 2nd mercosur congress on chemical engineering and 4th mercosur congress on process systems engineering, 14-18August 2005, Rio de Janeiro, Brazil. Available: http://www.enpromer2005.eq.ufrj.br/nukleo/pdfs/0266_enpromer_final.pdf.

  • Carvalho, A., Zambón, M., Curvelo, A., & Gandini, A. (2003). Size exclusion chromatography characterization of thermoplastic starch composites. Influence of plasticizer and fiber content. Polymer Degradation and Stability, 79, 133–138.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Lima, A. M., WS, S. B., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Functional polysaccharides as edible coatings for cheese. Journal of Agricultural and Food Chemistry, 57, 1456–1462.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Souza-Gallagher, M. J., Macedo, I., Rodriguez Aguilera, R., WS, S. B., Teixeira, J. A., et al. (2010). Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of regional cheese. Journal of Food Engineering, 97, 87–94.

    Article  CAS  Google Scholar 

  • Cha, D. S., Cooksey, K., Chiman, M. S., & Park, H. J. (2003). Release of nisin from various heat-pressed and cast films. LWT Food Science and Technology, 36, 209–213.

    CAS  Google Scholar 

  • Chang, Y., Cheah, P., & Seow, C. (2000). Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. Journal of Food Science, 65(3), 445–451.

    Article  CAS  Google Scholar 

  • Chang, P. R., Jian, R., Yu, J., & Maa, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80, 420–425.

    Article  CAS  Google Scholar 

  • Chen, M. C., Yeh, G. H. C., & Chiang, B. H. (1996). Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. Journal of Food Processing and Preservation, 20, 379–390.

    Article  CAS  Google Scholar 

  • Chien, P.-J., Fuu, S., & Yang, F.-I. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1), 225–229.

    Article  CAS  Google Scholar 

  • Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88, 159–168.

    Article  CAS  Google Scholar 

  • Chiu P-E & Lai L-S. (2010). Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. International Journal of Food Microbiology, 139, 23–30.

    Article  CAS  Google Scholar 

  • Cho, S. Y., Park, J.-W., & Rhee, C. (2002). Properties of laminated films from whey powder and sodium caseinate mixtures and zein layers. Lebensmittel-Wissenschaft und Technologie, 35, 135–139.

    Article  CAS  Google Scholar 

  • Chung, D., Papadakis, S. E., & Yam, K. L. (2001). Release of propyl paraben from a polymer coating into water and food simulating solvents for antimicrobial packaging applications. Journal of Food Processing and Preservation, 25, 71–87.

    Article  CAS  Google Scholar 

  • Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78, 90–103.

    Article  CAS  Google Scholar 

  • Coma, V., Sebti, I., Pardon, P., Deschamps, A., & Pichavant, F. H. (2001). Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit Listeria innocua and Sthaphylococcus aureus. Journal of Food Protection, 64(4), 70.

    Google Scholar 

  • Coma, V., Deschamps, A., & Martial-Gros, A. (2003). Bioactive packaging materials from edible chitosan polymer-antimicrobial assessment on dairy related contaminants. Journal of Food Science, 68(9), 2788–2792.

    Article  CAS  Google Scholar 

  • Coma, V., Sebti, I., Pardon, P., Pichavant, F. H., & Deschamps, A. (2003). Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohydrate Polymers, 51(3), 265–271.

    Article  CAS  Google Scholar 

  • Curvelo, A., Carvalho, A., & Agnelli, J. (2001). Thermoplastic starch-cellulosic fibers composites: Preliminary results. Carbohydrate Polymers, 45, 183–188.

    Article  CAS  Google Scholar 

  • Datta, S., Janes, M. E., Xue, Q. G., & La Peyre, J. F. (2008). Control of Listeria monocytogenes and Salmonella annatum on the surface of smoked salmon coated with calcium alginate coating containing oyster lysozyme and nisin. Journal of Food Science, 73(2), M67–M71.

    Article  CAS  Google Scholar 

  • de Azeredo HMC. (2009). Nanocomposites for food packaging applications. Food Research International, 42, 1240–1253.

    Article  CAS  Google Scholar 

  • de Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. C. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448–453.

    Article  CAS  Google Scholar 

  • Debeaufort, F., Quezada, J., Gallo, A., Delporte, B., & Voilley, A. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180, 47–55.

    Article  CAS  Google Scholar 

  • Phan The, D., Debeaufort, F., Peäroval, C., Despreä, D., Courthaudon, J. L., & Voil, A. (2002). Arabinoxylan-lipid-based edible films and coatings. 3. Influence of drying temperature on film structure and functional properties. Journal of Agriculture and Food Chemistry, 50, 2423–2428.

    Article  CAS  Google Scholar 

  • Delves-Broughton, J. (2005). Nisin as a food preservative. Food Australia, 57, 525–527.

    CAS  Google Scholar 

  • Delville, J., Joly, C., Dole, P., & Biliard, C. (2003). Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydrate Polymers, 53, 373–381.

    Article  CAS  Google Scholar 

  • Demirgöz, D., Elvira, C., Mano, J., Cunha, A. M., Piskin, E., & Reis, R. L. (2000). Chemical modification of starch based biodegradable polymeric blends: Effects on water uptake, degradation behaviour and mechanical properties. Polymer Degradation and Stability, 70, 161–170.

    Article  Google Scholar 

  • Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: Possibilities and limitations. International Dairy Journal, 14, 273–285.

    Article  Google Scholar 

  • Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308–316.

    Article  CAS  Google Scholar 

  • Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., Mchugh, T. H., Levin, C. E., & Friedman, M. (2008a). Storage stability and antibacterial activity against Escherichia coli O157:H7 of carvacrol in edible apple films made by two different casting methods. Journal of Agricultural and Food Chemistry, 56, 3082–3088.

    Article  CAS  Google Scholar 

  • Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., Mchugh, T. H., Levin, C. E., & Friedman, M. (2008b). Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrol-containing edible tomato films. Journal of Food Science, 73(7), M378–M383.

    Article  CAS  Google Scholar 

  • Durango, A. M., Soares, N. F. F., & Andrade, N. J. (2006). Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control, 17, 336–341.

    Article  CAS  Google Scholar 

  • Eswaranandam, S., Hettiarachhy, N. S., & Johnson, M. G. (2004). Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin incorporated soy protein film against Listeria monocytogenes, Eschericchia coli O157:H7, and Salmonella gaminara. Journal of Food Science, 69(3), FMS79–84.

    CAS  Google Scholar 

  • Fabec B., Hellstrom T., Henrysdotter G., Hjulmand-Lassen M., Nilsson J., Rüdinger L., Sipiläinen-Malm T., Solli E., Svensson K., Thorkelsson A. & Tuomala V. (2000). Active and intelligent food Packaging. A Nordic report on the legislative aspects. Nordic co-operation, pp 21-22. Available at: www.norden.org/pub/ebook/2000-584.pdf

  • Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. N. (2005). Mechanical properties of tapioca-starch edible films containing sorbates. LWT Food Science and Technology, 38, 631–639.

    Article  CAS  Google Scholar 

  • Famá, L., Flores, S. K., Gerschenson, L., & Goyanes, S. (2006). Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers, 66(1), 8–15.

    Article  CAS  Google Scholar 

  • Famá, L., Bittante, M. B. Q., Sobral, P. J. A., Goyanes, S., & Gerschenson, L. N. (2010). Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites. Materials Science and Engineering C, 30(6), 853–859.

    Article  CAS  Google Scholar 

  • Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y., & Chi, Y. (2009). Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry, 115, 66–70.

    Article  CAS  Google Scholar 

  • Fernández Cervera, M., Karjalainen, M., Airaksinen, S., Rantanen, J., Krogars, K., Heinämäki, J., et al. (2004). Physical stability and moisture sorption of aqueous chitosan–amylose starch films plasticized with polyols. European Journal of Pharmaceutics and Biopharmaceutics, 58, 69–76.

    Article  CAS  Google Scholar 

  • Fernandez-Saiz, P., Lagaron, J. M., & Ocio, M. J. (2009). Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocolloids, 23, 913–921.

    Article  CAS  Google Scholar 

  • Ferreira, C. O., Nunes, C. A., Delgadillo, I., & Lopes-da-Silva, J. A. (2009). Characterization of chitosan-whey protein films at acid pH. Food Research International, 42(7), 807–813.

    Article  CAS  Google Scholar 

  • Flores, S., Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. N. (2007a). Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Research International, 40, 257–265.

    Article  CAS  Google Scholar 

  • Flores, S., Haedo, A., Campos, C., & Gerschenson, L. N. (2007b). Antimicrobial performance of potassium sorbate supported in tapioca starch edible films. European Food Research &Technolology, 225(3–4), 375–384.

    Article  CAS  Google Scholar 

  • Flores, S. K., Costa, D., Yamashita, F., Gerschenson, L. N., & Grossmann, M. V. (2010). Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Materials Science and Engineering C, 30, 196–202.

    Article  CAS  Google Scholar 

  • Franssen, L. R., & Krochta, J. M. (2003). Edible Coatings containing natural antimicrobials for processed foods. In S. Roller (Ed.), Naturals antimicrobials for the minimal processing of foods, Chapter 12. Boca Ratón: CRC Press.

    Google Scholar 

  • Franssen L. R., Rumsey T. R. & Krochta J. M. (2002). Modeling of natamycin and potassium sorbate diffusion in whey protein isolate films for application to cheddar cheese. In: Institute of food technologists annual meeting, 15–19 June 2002, Anaheim, California, USA. Poster 28-5.

  • Garcia, M., Bifani, V., Campos, C. A., Martino, M. N., Sobral, P., Flores, S. K., et al. (2008). Edible coating as an oil barrier or active system. In Gutiérrez Lopez, Barbosa-Cánovas, Welti-Chanes, & Parada Arias (Eds.), Food Engineering: Integrated Approaches (pp. 225–241). New York: Springer.

    Google Scholar 

  • García, M., Martino, M., & Zaritizky, N. (2000). Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science, 65(6), 941–947.

    Article  Google Scholar 

  • Gerschenson, L. N., Campos, C. A., Barbosa, Cánovas, & Welti, Chanes. (1995). Sorbic acid stability during processing and storage of high moisture foods. In Food preservation by moisture control. Fundamentals and applications (pp. 761–90). Lancaster: Technomic Publishing Co.

    Google Scholar 

  • Giancone T. (2006). Hydrocolloids based edible films: Composition–structure–properties relationships. Doctoral Thesis Univeristá Degli study Di Napoli.

  • Giancone T., Torrieri E., Di Pierro P., Cavella S., Giosafatto C. V. L. & Masi P. (2009). Effect of surface density on the engineering properties of high methoxyl pectin-based edible films. Food and Bioprocess Technology, doi: 10.1007/s11947-009-0208-9, in press.

  • Giannakopoulos, A., & Guilbert, S. (1986). Determination of sorbic acid diffusivity in model food gels. Journal of Food Technology, 21, 339–353.

    Article  CAS  Google Scholar 

  • Gomez-Estaca, J., Montero, P., Giménez, B., & Gómez-Guillén, M. C. (2007). Effect of functional edible films and high pressure processing on microbial growth and oxidative spoilage in cold-smoke sardine (Sardina pilchardus). Food Chemistry, 105, 511–520.

    Article  CAS  Google Scholar 

  • Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Alemán, A., & Gómez-Guillén, M. C. (2009). Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 23, 1334–1341.

    Article  CAS  Google Scholar 

  • Guiga, W., Swesi, Y., Galland, S., Peyrol, E., Degraeve, P., & Sebti, I. (2010). Innovative multilayer antimicrobial films made with Nisaplin® or nisin and cellulosic ethers: Physico-chemical characterization, bioactivity and nisin desorption kinetics. Innovative Food Science & Emerging Technologies, 11, 352–360.

    Article  CAS  Google Scholar 

  • Han, C., Zhao, Y., Leonard, S. W., & Traber, M. G. (2004). Edible coating to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x Ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33, 67–78.

    Article  CAS  Google Scholar 

  • Han, C., Lederer, C., Mcdaniel, M., & Zhao, Y. (2005). Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan-based edible coatings. Journal of Food Science, 70(3), S172–S178.

    CAS  Google Scholar 

  • Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273–292.

    Article  CAS  Google Scholar 

  • Hosseini, M. H., Razavi, S. H., & Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation, 33, 727–743.

    Article  CAS  Google Scholar 

  • Imran, M., El-Fahmy, S., Revol-Junelles, A.-M., & Desobry, S. (2010). Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydrate Polymers, 81, 219–225.

    Article  CAS  Google Scholar 

  • Jeon, Y. J., Kamil, J. Y. V. A., & Shahidi, F. (2002). Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Journal of Agricultural and Food Chemistry, 50, 5167–5178.

    Article  CAS  Google Scholar 

  • Karbowiak, T., Debeaufort, F., & Voilley, A. (2007). Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocolloids, 21(5–6), 879–888.

    Article  CAS  Google Scholar 

  • Karbowiak, T., Debeaufort, D., Voilley, A., & Trystram, G. (2010). From macroscopic to molecular scale investigations of mass transfer of small molecules through edible packaging applied at interfaces of multiphase food products. Innovative Food Science & Emerging Technologies, 11, 352–360.

    Article  CAS  Google Scholar 

  • Kechichian Ditchfield, C., Veiga-Santos, P., & Tadini, C. C. (2010). Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT Food Science and Technology, 43, 1088–1094.

    Article  CAS  Google Scholar 

  • Kim, C. T., Kim, C. J., Cho, Y. J., Chun, B. Y., Lee, S. J., Cha, J. Y., et al. (2005). Preparation of starch and cellulose-based edible films incorporated with propolis extract and their physical and antimicrobial properties. Food Engineering Progress, 9(1), 1–7.

    Google Scholar 

  • Ko, S., Janes, M. E., Hettiarachchy, N. S., & Johnson, M. G. (2001). Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes. Journal of Food Science, 66(7), 1006–1011.

    Article  CAS  Google Scholar 

  • Kristo, E., & Biliaderis, C. G. (2006). Water sorption and thermo-mechanical properties of water/sorbitol-plasticized composite biopolymer films: Caseinate–pullulan bilayers and blends. Food Hydrocolloids, 20, 1057–1071.

    Article  CAS  Google Scholar 

  • Kristo, E., Biliaderis, C. G., & Zampraka, A. (2007). Water vapor barrier and tensile properties of composite caseinate–pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food Chemistry, 101, 753–764.

    Article  CAS  Google Scholar 

  • Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22, 373–386.

    Article  CAS  Google Scholar 

  • Ku, K. J., Hong, Y. H., & Song, K. B. (2008). Mechanical properties of a Gelidium corneum edible film containing catechi and its application in sausages. Journal of Food Science, 73(3), C217–221.

    Article  CAS  Google Scholar 

  • Kyoungju, K., & Song, K. B. (2007). Physical properties of nisin-incorporated gelatin and corn zein films and antimicrobial activity against Listeria monocytogenes. Journal of Microbiology and Biotechnology, 17(3), 520–523.

    Google Scholar 

  • Lafargue, D., Lourdin, D., & Doublier, J.-L. (2007). Film-forming properties of a modified starch/j-carrageenan mixture in relation to its rheological behavior. Carbohydrate Polymers, 70, 101–111.

    Article  CAS  Google Scholar 

  • Le Tien, C., Letendre, M., Ispas-Szabo, P., Mateescu, M. A., Delmas-Petterson, G., Yu, H.-L., et al. (2000). Development of biodegradable films from whey proteins by crosslinking and entrapment in cellulose. Journal of Agricultural and Food Chemistry, 48, 5566–5575.

    Article  CAS  Google Scholar 

  • Lee, J. Y., Park, H. J., Lee, C. Y., & Choi, W. Y. (2003). Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. Lebensmittel-Wissenschaft und Technologie, 36(3), 323–329.

    Article  CAS  Google Scholar 

  • Li, B., Kennedy, J. F., Peng, J. L., Yie, X., & Xie, B. J. (2006). Preparation and performance evaluation of glucomannan–chitosan–nisin ternary antimicrobial blend film. Carbohydrate Polymers, 65, 488–494.

    Article  CAS  Google Scholar 

  • Lim, G.-O., Jang, S.-A., Song, K.-B. (2010) Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. Journal of Food Engineering, 98(4), 415–420.

    Article  CAS  Google Scholar 

  • Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60–75.

    Article  CAS  Google Scholar 

  • Liolios, C. C., Gortzi, O., Lalas, S., Tsaknis, J., & Chinou, I. (2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chemistry, 112, 77–83.

    Article  CAS  Google Scholar 

  • Liu, L., LiuCK, F. M. L., & Hicks, K. B. (2007). Composite films from pectin and fish skin gelatin or soybean flour protein. Journal of Agricultural and Food Chemistry, 55, 2349–2355.

    Article  CAS  Google Scholar 

  • Lozina, L., Boehringer, S., D’Aquino, M., & Acosta, O. (2006). Eficacia del Propóleos sobre Malassezia pachydermatis. Correlación de distintas Técnicas in Vitro. Acta Farmaceutica Bonaerense, 25(4), 560–563.

    Google Scholar 

  • Maftoonazad N., Ramaswamy H. S. & Marcotte M. (2007a). Moisture sorption Behavior, and effect of moisture content and sorbitol on thermo-mechanical and barrier properties of pectin based edible films. International Journal of Food Engineering, 3(4), Article 10. Available at: http://www.bepress.com/ijfe/vol3/iss4/art10

  • Maftoonazad, N., Ramaswamy, H. S., Moalemiyan, M., & Kushalappa, A. C. (2007). Effect of pectin-based edible emulsion coating on changes in quality of avocado exposed to Lasiodiplodia theobromae infection. Carbohydrate Polymers, 68, 341–349.

    Article  CAS  Google Scholar 

  • Maizura, M., Fazilah, A., Norziah, M. H., & Karim, A. A. (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. Journal of Food Science, 72(6), C324–C330.

    Article  CAS  Google Scholar 

  • Marques, P. T., Lima, A. M. F., Bianco, G., Laurindo, J. B., Borsali, R., Le Meins, J.-F., et al. (2006). Thermal properties and stability of cassava starch films crosslinked with tetraethylene glycol diacrylate. Polymer Degradation and Stability, 91(4), 726–732.

    Article  CAS  Google Scholar 

  • Martins, J. T., Cerqueira, M., Souza, B. S., Avides, M., & Vicente, A. A. (2010). Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventional sources incorporating nisin against Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 58, 1884–1891.

    Article  CAS  Google Scholar 

  • Marudova, M., Lang, S., Brownsey, G. J., & Ring, S. G. (2005). Pectin-chitosan multilayer formation. Carbohydrate Research, 340, 2144–2149.

    Article  CAS  Google Scholar 

  • Mastromatteo, M., Chillo, S., Buonocore, G. G., Massaro, A., Conte, A., & Del Nobile, M. A. (2008). Effects of spelt and wheat bran on the performances of wheat gluten films. Journal of Food Engineering, 88, 202–212.

    Article  CAS  Google Scholar 

  • McHugh, T. H., & Krochta, J. M. (1994). Sorbitol vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry, 42(4), 841–845.

    Article  CAS  Google Scholar 

  • Mendes de Souza, P., Fernández, A., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2010). Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocolloids, 24, 300–306.

    Article  CAS  Google Scholar 

  • Min, S., Harris, L., & Krochta, J. (2005a). Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system against Salmonella enterica and Eschericchia coli O157:H7. Journal of Food Science, 70(7), M332–338.

    Article  CAS  Google Scholar 

  • Min, S., Harris, L., & Krochta, J. (2005b). Listeria monocytogenes inhibition by whey protein films and coatings incorporating the lactoperoxidase system. Journal of Food Science, 70(7), M317–324.

    Article  CAS  Google Scholar 

  • Min, S., Harris, L., & Krochta, J. (2005c). Inhibition of Penicillium commune by edible whey protein films incorporating lactoferrin, lactoferrin hydrolysate and the lactoperoxidase systems. Journal of Food Science, 70(2), M87–94.

    CAS  Google Scholar 

  • Mitrakas, G. E., Koutsoumanis, K. P., & Lazarides, H. N. (2008). Impact of edible coating with or without anti-microbial agent on microbial growth during osmotic dehydration and refrigerated storage of a model plant material. Innovative Food Science & Emerging Technologies, 9, 550–555.

    Article  CAS  Google Scholar 

  • Moreira, M. R., Ponce, A. G., del Valle, C. E., & Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Science and Technology, 38(5), 565–570.

    Article  CAS  Google Scholar 

  • Moreira, M. R., Ponce, A., Del Valle, C. E., & Roura, S. I. (2009). Edible coatings on fresh squash slices: Effect of film drying temperature on the nutritional and microbiological quality. Journal of Food Processing and Preservation, 33, 226–236.

    Article  Google Scholar 

  • Naidu, A. S. (2000). Lactoferrin, lactoperoxidase. In Naidu (Ed.), Natural food antimicrobial systems (pp. 17–132). New York: CRC Press.

    Chapter  Google Scholar 

  • No, H. K., Meyres, S. P., Prinyawiwatkull, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: A review. Journal of Food Science, 72, R87–R100.

    Article  CAS  Google Scholar 

  • Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120, 193–198.

    Article  CAS  Google Scholar 

  • Olivas, G. I., & Barbosa-Cánovas, G. V. (2008). Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. Lebensmittel-Wissenschaft und Technologie, 41, 359–366.

    CAS  Google Scholar 

  • Ouattara, B., Sabato, S. F., & Lacroix, M. (2001). Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp.). International Journal of Food Microbiology, 68, 1–9.

    Article  CAS  Google Scholar 

  • Ozdemir, M., & Floros, J. D. (2008). Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics. Journal of Food Engineering, 86, 215–224.

    Article  CAS  Google Scholar 

  • Park, S. I., Daeschel, M. A., & ZhaoY. (2004). Functional properties of antimicrobial lysozyme-chitosan composite films. Journal of Food Science, 69(8), 215–221.

    Article  Google Scholar 

  • Parris, N., Coffin, D. R., Joubran, R. F., & Pessen, H. (1995). Composition factors affecting the water vapor permeability and tensile properties of hydrophilic films. Journal of Agricultural and Food Chemistry, 43, 1432–1435.

    Article  CAS  Google Scholar 

  • Pintado, C. M., Ferreira, M. A. S. S., & Sousa, I. (2009). Properties of whey protein-based films containing organic acids and nisin to control Listeria monocytogenes. Journal of Food Protection, 72(9), 1891–1896.

    Google Scholar 

  • Ponce, A. G., Roura, S. I., del Valle, C. E., & Moreira, M. R. (2008). Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and in vivo studies. Postharvest Biology and Technology, 49, 294–300.

    Article  CAS  Google Scholar 

  • Pranoto, Y., Rakshit, S. K., & Salokhe, V. M. (2005a). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Science and Technology, 38, 859–865.

    Article  CAS  Google Scholar 

  • Pranoto, Y., Salokhe, V. M., & Rakshit, S. K. (2005b). Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 38, 267–272.

    Article  CAS  Google Scholar 

  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 42, 373–380.

    Article  Google Scholar 

  • Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121, 313–327.

    Article  CAS  Google Scholar 

  • Restuccia D., Spizzirri U. G., Parisi1 O. I., Cirillo G., Curcio M., Iemma F., Puoci F., Vinci G. & Picci N. (2010). New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control. Accepted paper. Avalilable at: doi:10.1016/j.foodcont.2010.04.028.

  • Rhim, J.-W. (2004). Physical and mechanical properties of water resistant sodium alginate films. Lebensmittel-Wissenschaft und Technologie, 37, 323–330.

    Article  CAS  Google Scholar 

  • Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Tecnology, 44, 63–70.

    Article  CAS  Google Scholar 

  • Robson, M. G., Ferreira Soares, N. F., Alvarenga Botrel, D., & de Almeida, G. L. (2008). Characterization and effect of edible coatings on minimally processed garlic quality. Carbohydrate Polymers, 72(3), 403–409.

    Google Scholar 

  • Roger, S., Talbot, D., & Bee, A. (2006). Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films. Journal of Magnetism and Magnetic Materials, 305, 221–227.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., et al. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 81, 634–641.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Tapia, M. S., & Martín-Belloso, O. (2008). Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT Food Science and Technology, 41(1), 139–147.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Soliva-Fortuny, R., & Martin-Belloso, O. (2009). Edible coatings to incorporate active ingredients to freshcut fruits: A review. Trends in Food Science and Technology, 20, 438–447.

    Article  CAS  Google Scholar 

  • Roller, S. (2003). Introduction. In Roller (Ed.), Natural antimicrobials for the minimal processing of foods (pp. 1–10). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Samelis, J., & Sofos, J. N. (2003). Organic acids. In Roller (Ed.), Natural antimicrobials for the minimal processing of foods. Boca Raton: CRC Press.

    Google Scholar 

  • Sanjurjo, K., Flores, S. K., Gerschenson, L. N., & Jagus, R. (2006). Study of the performance of nisin supported in edible films. Food Research International, 39, 749–754.

    Article  CAS  Google Scholar 

  • Sebti, I., Martial-Gros, A., Carnet-Pantiez, A., Grelier, S., & Coma, V. (2005). Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. Journal of Food Science, 70(2), 100–104.

    Google Scholar 

  • Sebti, I., Chollet, E., Degraeve, P., Noel, C., & Peyrol, E. (2007). Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. Journal of Agricultural and Food Chemistry, 55, 693–699.

    Article  CAS  Google Scholar 

  • Seifu, E., Buys, E. M., & Donkin, E. F. (2005). Significance of the lactoperoxidase system in the dairy industry and its potential applications: A review. Trends in Food Science and Technology, 16, 1–18.

    Article  CAS  Google Scholar 

  • Seol, K.-H., Lim, D.-G., Jang, A., Jo, C., & Lee, M. (2009). Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5°C. Meat Science, 83, 479–483.

    Article  CAS  Google Scholar 

  • Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–644.

    Article  CAS  Google Scholar 

  • Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285–290.

    Article  CAS  Google Scholar 

  • Simões, A. D. N., Tudela, J. A., Allende, A., Puschmann, R., & Gil, M. I. (2009). Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks. Postharvest Biology and Technology, 51, 364–370.

    Article  CAS  Google Scholar 

  • Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41, 781–785.

    Article  CAS  Google Scholar 

  • Soares, R. M. D., Lima, A. M. F., Oliveira, R. V. B., Pires, A. T. N., & Soldi, V. (2005). Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polymer Degradation and Stability, 90(3), 449–454.

    Article  CAS  Google Scholar 

  • Sofos, J. N. (2000). Sorbic acid. In Naidu (Ed.), Natural Food Antimicrobial Systems, Chapter 23. Boca Raton: CRC Press.

    Google Scholar 

  • Sousa, F., Guebitz, G. M., & Kokol, V. (2009). Antimicrobial and antioxidant properties of chitosan enzymatically functionalized with flavonoids. Process Biochemistry, 44, 749–756.

    Article  CAS  Google Scholar 

  • Tapia, M. S., Rojas-Graü, M. A., Rodríguez, F. J., Ramírez, J., Carmona, A., & Martin-Belloso, O. (2007). Alginate- and gellan-based edible films for probiotic coatings on fresh-cut fruits. Journal of Food Science, 72(4), E190–E196.

    Article  CAS  Google Scholar 

  • Teixeira V. (2007). Advanced nanotechnology thin film approaches for the food and medical industry: An overview of currect status. Available at: www.nanohub.org/resource/2257. Accessed 18 December 2008.

  • Theivendran, S., Hettiarachchy, N. S., & Johnson, M. G. (2006). Inhibition of Listeria monocytogenes by nisin combined with grape seed extract or green tea extract in soy protein film coated on turkey frankfurters. Journal of Food Science, 71(2), M39–M44.

    Article  CAS  Google Scholar 

  • Thomas L. V., Ckarkson M. R. & Delves Broughton J. (2000). Nisin. In: Naidu (ed) Natural Food Antimicrobial Systems, Chapter 18. Boca Raton: CRC Press

  • Turhan, K. N., & Sahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. Journal of Food Engineering, 61(3), 459–466.

    Article  Google Scholar 

  • Valencia-Chamorro, S. A., Pérez-Gago, M. B., Del Río, M. A., & Palou, L. (2009). Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coatings containing antifungal food additives to control citrus postharvest green and blue molds. Journal of Agricultural and Food Chemistry, 57, 2770–2777.

    Article  CAS  Google Scholar 

  • Valero, M., & Francés, E. (2006). Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration to inhibit Bacillus cereus in carrot broth. Food Microbiology, 23, 68–73.

    Article  CAS  Google Scholar 

  • Vargas, M., Albors, A., Chiralt, A., & González-Maríınez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41, 164–171.

    Article  CAS  Google Scholar 

  • Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496–511.

    Article  CAS  Google Scholar 

  • Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23, 536–547.

    Article  CAS  Google Scholar 

  • Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762–769.

    Article  CAS  Google Scholar 

  • Veiga-Santos, P., Oliveirab, L. M., Ceredac, M. P., Alvesd, A. J., & Scamparini, A. R. P. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: Effect of additives and deacetylated xanthan gum. Food Hydrocolloids, 19, 341–349.

    Article  CAS  Google Scholar 

  • Wambura P., Yang W. & Mwakatage N. R. (2008). Effects of sonication and edible coating containing rosemary and tea extracts on reduction of peanut lipid oxidative rancidity. Food and Bioprocess Technology, DOI: 10.1007/s11947-008-0150-2, in press.

  • Weiss, J., Takhistov, P., & McClements, J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71(9), R107–116.

    Article  CAS  Google Scholar 

  • Xu, Y. X., Kimb, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan–starch composite film: Preparation and characterization. Industrial Crops and Products, 21, 185–192.

    Article  CAS  Google Scholar 

  • Ye, M., Neetoo, H., & Chen, H. (2008). Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, 127, 235–240.

    Article  CAS  Google Scholar 

  • Yener, F. Y. G., Korel, F., & Yemenicioglu, A. (2009). Antimicrobial activity of lactoperoxidase system into crosslinked alginate films. Journal of Food Science, 74(2), M73–79.

    Article  CAS  Google Scholar 

  • Yildirim, M., Gulec, F., Bayram, M., & Yildirim, Z. (2006). Properties of kashar cheese coated with casein as carrier of natamycin. Italian Journal of Food Science, 18, 127–138.

    CAS  Google Scholar 

  • Zactiti, E. M., & Kieckbusch, T. G. (2005). Potassium sorbate permeability in biodegradable alginate films: Effect of the antimicrobial agent concentration and crosslinking degree. Journal of Food Engineering, 77, 462–467.

    Article  CAS  Google Scholar 

  • Zhang, H., Kong, B., Xiong, Y. L., & Sun, X. (2009). Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4°C. Meat Science, 8, 686–692.

    Article  CAS  Google Scholar 

  • Zheng, Z. L., Tan, J. Y. W., Liu, H. Y., Zhou, X. H., Xiang, X., & Wang, K. Y. (2009). Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture, 292(3–4), 214–218.

    Article  CAS  Google Scholar 

  • Zhong, Q.-P., & Xia, W.-S. (2008). Physicochemical properties of chitosan-based films. Food Technology and Biotechnology, 46(3), 262–269.

    CAS  Google Scholar 

  • Ziani, K., Fernandez Pan, I., Royo, M., & Maté, J. (2009). Antifungal activity of films and solutions based on chitosan. Food Hydrocolloids, 23, 2309–2314.

    Article  CAS  Google Scholar 

  • Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science, 82, 338–345.

    Article  CAS  Google Scholar 

  • Zinoviadou, K., Koutsoumanis, K. P., & Biliaderis, C. G. (2010). Physical and thermomechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 24, 49–59.

    Article  CAS  Google Scholar 

  • Zivanovic, S., Chi, S., & Draughon, A. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70(1), 45–51.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas de la República Argentina and Agencia Nacional de Investigaciones Científicas y Tecnológicas de la República Argentina is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia K. Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, C.A., Gerschenson, L.N. & Flores, S.K. Development of Edible Films and Coatings with Antimicrobial Activity. Food Bioprocess Technol 4, 849–875 (2011). https://doi.org/10.1007/s11947-010-0434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0434-1

Keywords

Navigation