Skip to main content
Log in

Sous Vide Processing as an Alternative to Common Cooking Treatments: Impact on the Starch Profile, Color, and Shear Force of Potato (Solanum tuberosum L.)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study aimed to assess the effect of sous vide cooking on the total and resistant starch content, color, and shear force in three potato cultivars (Agria, Agata, and Carrera). Potato strips were also cooked by three common treatments (boiling, frying, and microwaving) to evaluate the differences between the methods. According to principal component analysis (PCA), sous vide-processed cv. Agria and Agata potato strips were grouped with boiled samples, in contrast, cv. Carrera sous vide samples were grouped with microwaved samples. Higher water losses were associated with microwaved potatoes due to the diffusion of water inside the tuber. In addition, a significant decrease in shear force was obtained after microwaving and sous vide cooking (p < 0.05) irrespective of the treatment strength. The three cultivars became less bright, and the intensity of the color decreased; however, variations in the cook value (C 100, min) between treatments did not affect the lightness and hue angle. Regardless of the initial value of resistant starch and the intensity of the cooking process, all of the cultivars reached a final content of less than 5%. From our results, in-pack sterilization may be considered for application in the food industry as a technology that has a similar impact to conventional cooking treatments used on potato products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, J. B., & Brown, M. (2007). Discoloration in raw and processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 47(3), 319–333.

    Article  CAS  Google Scholar 

  • Aina, A. J., Falade, K. O., Akingbala, J. O., & Titus, P. (2012). Physicochemical properties of caribbean sweet potato (Ipomoea batatas (L) Lam) starches. Food Bioprocess Technology, 5(2), 576–583.

    Article  CAS  Google Scholar 

  • Alvarez, M. D., & Canet, W. (2009). Thermal processing and quality optimization. In J. Singh & L. Kaur (Eds.), Advances in potato chemistry and technology. MA: Academic Press. Elsevier Burlington.

    Google Scholar 

  • AOAC (1990). AOAC Official Methods of Analysis. (15th ed., Vol. 2, p. 614). Arlington, VA, USA.

  • AOAC 2002.02-2005. Resistant starch in starch and plant materials. Enzymatic digestion. AOAC Official Methods of Analysis. (19th Ed.). Arlington, VA, USA.

  • AOAC 996.11-2005. Starch (total) in cereal products. Amyloglucosidase-α-amylase method. AOAC Official Methods of Analysis. (19th Ed.). Arlington, VA, USA.

  • Baldwin, D. E. (2012). Sous vide cooking: a review. International Journal of Gastronomy and Food Science, 1(1), 15–30.

    Article  Google Scholar 

  • Błaszczak, W., Sadowska, J., Fornal, J., Vacek, J., Flis, B., & Zagórski-Ostoja, W. (2004). Influence of cooking and microwave heating on microstructure and mechanical properties of transgenic potatoes. Nahrung/Food, 48(3), 169–176.

    Article  Google Scholar 

  • Camire, M. E., Kubow, S., & Donnelly, D. J. (2009). Potatoes and human health. Critical Reviews in Food Science and Nutrition, 49(10), 823–840.

    Article  CAS  Google Scholar 

  • Chiavaro, E., Barbanti, D., Vittadini, E., & Massini, R. (2006). The effect of different cooking methods on the instrumental quality of potatoes (cv. Agata). Journal of Food Engineering, 77(1), 169–178.

    Article  Google Scholar 

  • Chiavaro, E., Mazzeo, T., Visconti, A., Manzi, C., Fogliano, V., & Pellegrini, N. (2012). Nutritional quality of sous vide cooked carrots and Brussels sprouts. Journal of Agricultural and Food Chemistry, 60(23), 6019–6025.

    Article  CAS  Google Scholar 

  • Costa, A. I. A., & Jongen, W. M. F. (2010). Designing new meals for an ageing population. Critical Reviews in Food Science and Nutrition, 50(6), 489–502.

    Article  Google Scholar 

  • De Wilde, T., De Meulenaer, B., Mestdagh, F., Govaert, Y., Ooghe, W., Fraselle, S., Demeulemeester, K., Van Peteghem, C., Calus, A., Degroodt, J.-M., & Verhé, R. (2006). Selection criteria for potato tubers to minimize acrylamide formation during frying. Journal of Agricultural and Food Chemistry, 54(6), 2199–2205.

    Article  CAS  Google Scholar 

  • Fernandes, G., Velangi, A., & Wolever, T. (2005). Glycemic index of potatoes commonly consumed in North America. Journal of the American Dietetic Association, 105(4), 557–562.

    Article  Google Scholar 

  • García-Alonso, A., & Goñi, I. (2000). Effect of processing on potato starch: in vitro availability and glycaemic index. Starch - Stärke, 52(2–3), 81–84.

    Article  Google Scholar 

  • García-Segovia, P., Andrés-Bello, A., & Martínez-Monzó, J. (2008). Textural properties of potatoes (Solanum tuberosum L. cv. Monalisa) as affected by different cooking processes. Journal of Food Engineering, 88(1), 28–35.

    Article  Google Scholar 

  • Gökmen, V., & Palazoğlu, T. K. (2009). Measurement of evaporated acrylamide during frying of potatoes: effect of frying conditions and surface area-to-volume ratio. Journal of Food Engineering, 93, 172–176.

    Article  Google Scholar 

  • Hejtmánková, K., Kotíková, Z., Hamouz, K., Pivec, V., Vacek, J., & Lachman, J. (2013). Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. Journal of Food Composition and Analysis, 32(1), 20–27.

    Article  Google Scholar 

  • Hyytiä-Trees, E., Skyttä, E., Mokkila, M., Kinnunen, A., Lindström, M., Lähteenmäki, L., Ahvenaiben, R., & Korkeala, H. (2000). Safety evaluation of sous-vide-processed products with respect to nonproteolytic Clostridium botulinum by use of challenge studies and predictive microbiological models. Applied and Environmental Microbiology, 66(1), 223–229.

    Article  Google Scholar 

  • Iborra-Bernad, C., García-Segovia, P., & Martínez-Monzó, J. (2014). Effect of vacuum cooking treatment on physicochemical and structural characteristics of purple-flesh potato. International Journal of Food Science and Technology, 49(4), 943–951.

    Article  CAS  Google Scholar 

  • Kingman, S. M., & Englyst, H. N. (1994). The influence of food preparation methods on the in-vitro digestibility of starch in potatoes. Food Chemistry, 49(2), 181–186.

    Article  Google Scholar 

  • Kozempel, M. F. (1988). Modeling the kinetics of cooking and precooking potatoes. Journal of Food Science, 53(3), 753–755.

    Article  Google Scholar 

  • Krokida, M. K., Oreopoulou, V., Maroulis, Z. B., & Marinos-Kouris, D. (2001). Colour changes during deep fat frying. Journal of Food Engineering, 48(3), 219–225.

    Article  Google Scholar 

  • Lante, A., & Zocca, F. (2010). Effect of β-cyclodextrin addition on quality of precooked vacuum packed potatoes. LWT-Food Science and Technology, 43(3), 409–414.

    Article  CAS  Google Scholar 

  • Lemmens, L., Colle, I., Knockaert, G., Van Buggenhout, S., Van Loey, A., & Hendrickx, M. (2013). Influence of pilot scale in pack pasteurization ad sterilization treatments on nutritional and textural characteristics of carrot pieces. Food Research International, 50(2), 526–533.

    Article  CAS  Google Scholar 

  • Ling, B., Tang, J., Kong, F., Mitcham, E. J., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: a review. Food Bioprocess Technology, 8(2), 343–358.

    Article  CAS  Google Scholar 

  • Lu, W., Haynes, K., Wiley, E., & Clevidence, B. (2001). Carotenoid content and color in diploid potatoes. Journal of the American Society for Horticultural Science, 126(6), 722–726.

    CAS  Google Scholar 

  • Martínez-Hernández, G. B., Artés-Hernández, F., Colares-Souza, F., Gómez, P. A., García-Gómez, P., & Artés, F. (2013). Innovative cooking techniques for improving the overall quality of a Kailan-hybrid broccoli. Food Bioprocess Technology, 6(8), 2135–2149.

    Article  Google Scholar 

  • Monro, J., Mishra, S., Blandford, E., Anderson, J., & Genet, R. (2009). Potato genotype differences in nutritionally distinct starch fractions after cooking and cooking plus storing cool. Journal of Food Composition and Analysis, 22(6), 539–545.

    Article  CAS  Google Scholar 

  • Mulinacci, N., Ieri, F., Giaccherini, C., Innocenti, M., Andrenelli, L., Canova, G., Saracchi, M., & Casiraghi, M. C. (2008). Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. Journal of Agricultural and Food Chemistry, 56(24), 11830–11837.

    Article  CAS  Google Scholar 

  • Pedreschi, F., Moyano, P., Kaack, K., & Granby, K. (2005). Colour changes and acrylamide formation in fried potato slices. Food Research International, 38(1), 1–9.

    Article  CAS  Google Scholar 

  • Pedreschi, F., Bunger, A., Skurtys, O., Allen, P., & Rojas, X. (2012). Grading of potato chips according to their sensory quality determined by color. Food Bioprocess Technology, 5(6), 2401–2408.

    Article  Google Scholar 

  • Pravisani, C. I., & Calvelo, A. (1986). Minimum cooking time for potato strip frying. Journal of Food Science, 51(3), 614–617.

    Article  Google Scholar 

  • Van Dijk, C., Fischer, M., Holm, J., Beekhuizen, J. G., Stolle-Smits, T., & Boeriu, C. (2002). Texture of cooked potatoes (Solanum tuberosum). 1. Relationships between dry matter content, sensory-perceived texture, and near-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 50(18), 5082–5088.

    Article  CAS  Google Scholar 

  • Yang, Y., Achaerandio, I., & Pujolà, M. (2015). Classification of potato cultivars to establish their processing aptitude. Journal of the Science Food and Agriculture. doi:10.1002/jsfa.7104.

    Google Scholar 

  • AOAC (1990). AOAC Official Methods of Analysis (15th ed., Vol. 2, p. 614). Arlington, VA, USA.

Download references

Acknowledgements

This work was carried out with the support of Torribas SA (Barcelona Spain). Author Yali Yang thanks the China Scholarship Council (File number. 201206990014) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Pujolà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, S., Achaerandio, I., Yang, Y. et al. Sous Vide Processing as an Alternative to Common Cooking Treatments: Impact on the Starch Profile, Color, and Shear Force of Potato (Solanum tuberosum L.). Food Bioprocess Technol 10, 759–769 (2017). https://doi.org/10.1007/s11947-016-1857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1857-0

Keywords

Navigation