Skip to main content
Log in

Kinetics of Food Quality Changes During Thermal Processing: a Review

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Thermal treatments are extensively used in the food industry for control of pathogenic and spoilage microorganisms and spoilage enzymes. Food quality degradation during those treatments can be a major concern for consumer acceptance. Kinetic studies and mathematical models on quality changes of foods are essential in proper design of thermal treatments to ensure consumer satisfaction. This study provides a comprehensive review of recent progresses on quality kinetics for thermal treatments to inactivate microorganisms and enzymes in foods of both plant and animal origins. This paper mainly covers the theoretical basis for studying quality kinetics, common and special kinetic models to describe major quality attributes, such as appearance, texture, and nutrients, and potential applications of quality kinetic models to developing thermal treatment protocols. Finally, this review describes the challenges in quality kinetic studies and proposes recommendations for future research to maintain food quality and extend shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, J. (1991). Review: enzyme inactivation during heat processing of food-stuffs. International Journal of Food Science & Technology, 26(1), 1–20.

    Article  CAS  Google Scholar 

  • Ahmed, J., Shivhare, U. S., & Ramaswamy, H. S. (2002). A fraction conversion kinetic model for thermal degradation of color in red chilli puree and paste. LWT—Food Science and Technology, 35(6), 497–503.

    CAS  Google Scholar 

  • Anthon, G. E., & Barrett, D. M. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. Journal of Agricultural and Food Chemistry, 50(14), 4119–4125.

    Article  CAS  Google Scholar 

  • Avila, I., & Silva, C. L. M. (1999). Modelling kinetics of thermal degradation of colour in peach puree. Journal of Food Engineering, 39(2), 161–166.

    Article  Google Scholar 

  • Awuah, G., Ramaswamy, H., & Economides, A. (2007). Thermal processing and quality: principles and overview. Chemical Engineering and Processing: Process Intensification, 46(6), 584–602.

    Article  CAS  Google Scholar 

  • Barreiro, J. A., Milano, M., & Sandoval, A. J. (1997). Kinetics of colour change of double concentrated tomato paste during thermal treatment. Journal of Food Engineering, 33(3–4), 359–371.

    Article  Google Scholar 

  • Barsa, C. S., Normand, M. D., & Peleg, M. (2012). On models of the temperature effect on the rate of chemical reactions and biological processes in foods. Food Engineering Reviews, 4(4), 191–202.

    Article  CAS  Google Scholar 

  • Beck, J.V. & Arnold, K.J. (1977). Parameter estimation in engineering and science. New York: John Wiley & Sons, 495pp.

  • Bermudez-Aguirre, D., & Corradini, M. G. (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: a review. Food Research International, 45(2), 700–712.

    Article  Google Scholar 

  • Bourne, M. (2002). Food texture and viscosity: concept and measurement. Elsevier Science.

  • Breda, C. A., Sanjinez-Argandoña, E. J., & Correia, C. A. C. (2012). Shelf life of powdered Campomanesia adamantium pulp in controlled environments. Food Chemistry, 135(4), 2960–2964.

    Article  CAS  Google Scholar 

  • Brookmire, L., Mallikarjunan, P., Jahncke, M., & Grisso, R. (2013). Optimum cooking conditions for shrimp and Atlantic salmon. Journal of Food Science, 78(2), S303–S313.

    Article  Google Scholar 

  • Buransompob, A., Tang, J., Mao, R., & Swanson, B. G. (2003). Rancidity of walnuts and almonds affected by short time heat treatments for insect control. Journal of Food Processing and Preservation, 27(6), 445–464.

    Article  Google Scholar 

  • Chen, L., & Opara, U. L. (2013). Texture measurement approaches in fresh and processed foods—a review. Food Research International, 51(2), 823–835.

    Article  Google Scholar 

  • Chung, H., Wang, S., & Tang, J. (2007). Influence of heat transfer in test tubes on measured thermal inactivation parameters for Escherichia coli. Journal of Food Protection, 70(4), 851–859.

    Google Scholar 

  • Chung, H. J., Birla, S., & Tang, J. (2008). Performance evaluation of aluminum test cell designed for determining the heat resistance of bacterial spores in foods. LWT—Food Science and Technology, 41(8), 1351–1359.

    CAS  Google Scholar 

  • Chutintrasri, B., & Noomhorm, A. (2007). Color degradation kinetics of pineapple puree during thermal processing. LWT—Food Science and Technology, 40(2), 300–306.

    CAS  Google Scholar 

  • Corradini, M. G., & Peleg, M. (2004). A model of non-isothermal degradation of nutrients, pigments and enzymes. Journal of the Science of Food and Agriculture, 84(3), 217–226.

    Article  CAS  Google Scholar 

  • Corradini, M. G., & Peleg, M. (2006). Prediction of vitamins loss during non-isothermal heat processes and storage with non-linear kinetic models. Trends in Food Science & Technology, 17(1), 24–34.

    Article  CAS  Google Scholar 

  • Czerwonka, M., Szterk, A., & Waszkiewicz-Robak, B. (2014). Vitamin B12 content in raw and cooked beef. Meat Science, 96(3), 1371–1375.

    Article  CAS  Google Scholar 

  • De Roeck, A., Mols, J., Duvetter, T., Van Loey, A., & Hendrickx, M. (2010). Carrot texture degradation kinetics and pectin changes during thermal versus high-pressure/high-temperature processing: a comparative study. Food Chemistry, 120(4), 1104–1112.

    Article  Google Scholar 

  • Dhuique-Mayer, C., Tbatou, M., Carail, M., Caris-Veyrat, C., Dornier, M., & Amiot, M. J. (2007). Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. Journal of Agricultural and Food Chemistry, 55(10), 4209–4216.

    Article  CAS  Google Scholar 

  • Dolan, K. D. (2003). Estimation of kinetic parameters for nonisothermal food processes. Journal of Food Science, 68(3), 728–741.

    Article  CAS  Google Scholar 

  • Earle, R. L., & Earle, M. D. (2003). Fundamentals of food reaction technology. Surrey: Leatherhead Food International Limited. 187pp.

    Google Scholar 

  • Fante, L., & Noreña, C. P. Z. (2012). Enzyme inactivation kinetics and colour changes in Garlic (Allium sativum L.) blanched under different conditions. Journal of Food Engineering, 108(3), 436–443.

    Article  CAS  Google Scholar 

  • FDA (2000). Kinetics of microbial inactivation for alternative food processing technologies. http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm100158.htm. Last accessed on May 2, 2014.

  • Fellows, P.J. (2009). Food processing technology: principles and practice, Third Edition. Boca Raton: CRC Press, 895pp.

  • Fernandez-Lopez, J. A., Angosto, J. M., Gimenez, P. J., & Leon, G. (2013). Thermal stability of selected natural red extracts used as food colorants. Plant Foods for Human Nutrition, 68(1), 11–17.

    Article  CAS  Google Scholar 

  • Fu, B., & Labuza, T. P. (1993). Shelf-life prediction: theory and application. Food Control, 4(3), 125–133.

    Article  Google Scholar 

  • Fujikawa, H., & Itoh, T. (1998). Thermal inactivation analysis of mesophiles using the Arrhenius and z-value models. Journal of Food Protection, 61(7), 910–912.

    CAS  Google Scholar 

  • Ganjloo, A., Rahman, R. A., Osman, A., Bakar, J., & Bimakr, M. (2011). Kinetics of crude peroxidase inactivation and color changes of thermally treated seedless guava (Psidium guajava L.). Food and Bioprocess Technology, 4(8), 1442–1449.

    Article  CAS  Google Scholar 

  • Gao, M., Tang, J., Wang, Y., Powers, J., & Wang, S. (2010). Almond quality as influenced by radio frequency heat treatments for disinfestation. Postharvest Biology and Technology, 58(3), 225–231.

    Article  Google Scholar 

  • Goncalves, E. M., Pinheiro, J., Abreu, M., Brandao, T. R. S., & Silva, C. L. M. (2007). Modelling the kinetics of peroxidase inactivation, colour and texture changes of pumpkin (Cucurbita maxima L.) during blanching. Journal of Food Engineering, 81(4), 693–701.

    Article  CAS  Google Scholar 

  • Gondo, S., Sato, R., & Kusunoki, K. (1972). Iterative method of correcting the effect of temperature changes on evaluating the rate constant of the first order chemical reaction. Chemical Engineering Science, 27, 1609–1611.

    Article  CAS  Google Scholar 

  • Goñi, S. M., & Salvadori, V. O. (2011). Kinetic modelling of colour changes during beef roasting. Procedia Food Science, 1, 1039–1044.

    Article  Google Scholar 

  • Hadjal, T., Dhuique-Mayer, C., Madani, K., Dornier, M., & Achir, N. (2013). Thermal degradation kinetics of xanthophylls from blood orange in model and real food systems. Food Chemistry, 138(4), 2442–2450.

    Article  CAS  Google Scholar 

  • Haefner, J.W. (2005). Modeling biological systems: principles and applications. New York: Springer, 463pp.

  • Hansen, J. D., Wang, S., & Tang, J. (2004). A cumulated lethal time model to evaluate efficacy of heat treatments for codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae) in cherries. Postharvest Biology and Technology, 33(3), 309–317.

    Article  Google Scholar 

  • Harbourne, N., Jacquier, J. C., Morgan, D. J., & Lyng, J. G. (2008). Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods. Food Chemistry, 111(1), 204–208.

    Article  CAS  Google Scholar 

  • Hill, C.G. (1977). An introduction to chemical engineering kinetics & reactor design. New York: John Wiley & Sons, 584pp.

  • Hindra, F., & Baik, O. D. (2006). Kinetics of quality changes during food frying. Critical Reviews in Food Science and Nutrition, 46(3), 239–258.

    Article  CAS  Google Scholar 

  • Hiwilepo-van Hal, P., Bosschaart, C., van Twisk, C., Verkerk, R., & Dekker, M. (2012). Kinetics of thermal degradation of vitamin C in marula fruit (Sclerocarya birrea subsp. caffra) as compared to other selected tropical fruits. LWT--Food Science and Technology, 49(2), 188–191.

    Article  CAS  Google Scholar 

  • Holdsworth, D. & Simpson, R. (2008). Thermal processing of packaged foods. London: Blackie Academic and Professional, 427 pp.

  • IFT (2003). Kinetic models for microbial survival during processing. http://www.ift.org/Knowledge-Center/Read-IFT-Publications/Science-Reports/Research-Summits/Kinetic-Models.aspx. Last accessed on June 20, 2014.

  • Jaiswal, A. K., Gupta, S., & Abu-Ghannam, N. (2012). Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chemistry, 131(1), 63–72.

    Article  CAS  Google Scholar 

  • Jimenez, N., Bohuon, P., Lima, J., Dornier, M., Vaillant, F., & Perez, M. (2010). Kinetics of anthocyanin degradation and browning in reconstituted blackberry juice treated at high temperatures (100–180 degrees C). Journal of Agricultural and Food Chemistry, 58(4), 2314–2322.

    Article  CAS  Google Scholar 

  • Jin, T., Zhang, H., Boyd, G., & Tang, J. M. (2008). Thermal resistance of Salmonella enteritidis and Escherichia coli K12 in liquid egg determined by thermal-death-time disks. Journal of Food Engineering, 84(4), 608–614.

    Article  Google Scholar 

  • Jonsson, U., Snygg, B. G., HäNulv, B. G., & Zachrisson, T. (1977). Testing two models for the temperature dependence of the heat inactivation rate of Bacillus stearothermophilus spores. Journal of Food Science, 42(5), 1251–1252.

    Article  Google Scholar 

  • Kechinski, C. P., Guimaraes, P. V. R., Norena, C. P. Z., Tessaro, I. C., & Marczak, L. D. F. (2010). Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. Journal of Food Science, 75(2), C173–C176.

    Article  CAS  Google Scholar 

  • Knights, M. (2013). Microwave sterilization for packaged meals. Food Engineering, 10, 159–160.

    Google Scholar 

  • Ko, W. C., Liu, W. C., Tsang, Y. T., & Hsieh, C. W. (2007). Kinetics of winter mushrooms (Flammulina velutipes) microstructure and quality changes during thermal processing. Journal of Food Engineering, 81(3), 587–598.

    Article  CAS  Google Scholar 

  • Kong, F. B., Tang, J. M., Rasco, B., & Crapo, C. (2007). Kinetics of salmon quality changes during thermal processing. Journal of Food Engineering, 83(4), 510–520.

    Article  Google Scholar 

  • Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41, 1210–1222.

    Article  CAS  Google Scholar 

  • Labuza, T. P. (1984). Application of chemical kinetics to deterioration of foods. Journal of Chemical Education, 61(4), 348.

    Article  CAS  Google Scholar 

  • Lau, M. H., Tang, J., & Swanson, B. G. (2000). Kinetics of textural and color changes in green asparagus during thermal treatments. Journal of Food Engineering, 45(4), 231–236.

    Article  Google Scholar 

  • Lemmens, L., Colle, I. J. P., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2011). Quantifying the influence of thermal process parameters on in vitro beta-carotene bioaccessibility: a case study on carrots. Journal of Agricultural and Food Chemistry, 59(7), 3162–3167.

    Article  CAS  Google Scholar 

  • Levenspiel, O. (1999). Chemical reaction engineering. New York: John Wiley & Sons, 665pp.

  • Liaotrakoon, W., Clercq, N., Hoed, V., Walle, D., Lewille, B., & Dewettinck, K. (2013). Impact of thermal teatment on physicochemical, antioxidative and rheological properties of white-flesh and red-flesh dragon fruit (Hylocereus spp.) purees. Food and Bioprocess Technology, 6(2), 416–430.

    Article  CAS  Google Scholar 

  • Liing, A. C., & Lund, D. B. (1978). Determining kinetic parameters for thermal inactivation of heat resistant and heat-labile isozymes from thermal destruction curves. Journal of Food Science, 43(4), 1307–1310.

    Article  Google Scholar 

  • Lima, J. R., Elizondo, N. J., & Bohuon, P. (2010). Kinetics of ascorbic acid degradation and colour change in ground cashew apples treated at high temperatures (100–180°C). International Journal of Food Science & Technology, 45(8), 1724–1731.

    Article  CAS  Google Scholar 

  • Liu, Y., Tang, J., Mao, Z., Mah, J.-H., Jiao, S., & Wang, S. (2011). Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. Journal of Food Engineering, 104(4), 492–498.

    Article  Google Scholar 

  • Lund, D. B. (1977). Design of thermal processes for minimizing nutrient retention. Food Technology, 71–78.

  • Marra, F., Zhang, L., & Lyng, J. G. (2009). Radio frequency treatment of foods: review of recent advances. Journal of Food Engineering, 91(4), 497–508.

    Article  Google Scholar 

  • Nayak, B., Berrios, J. D. J., Powers, J. R., & Tang, J. M. (2011). Thermal degradation of anthocyanins from purple potato (cv. Purple Majesty) and impact on antioxidant capacity. Journal of Agricultural and Food Chemistry, 59(20), 11040–11049.

    Article  CAS  Google Scholar 

  • Nelson, P.E. (2010). Principles of aseptic processing and packaging. Purdue University Press.

  • Nguyen, M. T., Indrawati, & Hendrickx, M. (2003). Model studies on the stability of folic acid and 5-methyltetrahydrofolic acid degradation during thermal treatment in combination with high hydrostatic pressure. Journal of Agricultural and Food Chemistry, 51(11), 3352–3357.

    Article  CAS  Google Scholar 

  • Nisha, P., Singhal, R. S., & Pandit, A. B. (2006). Kinetic modelling of texture development in potato cubes (Solanum tuberosum L.), green gram whole (Vigna radiate L.) and red gram splits (Cajanus cajan L.). Journal of Food Engineering, 76(4), 524–530.

    Article  Google Scholar 

  • Nisha, P., Singhal, R., & Pandit, A. (2011). Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food and Bioprocess Technology, 4(5), 781–787.

    Article  Google Scholar 

  • Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., Elez-Martínez, P., & Martín-Belloso, O. (2012). Stability of health-related compounds in plant foods through the application of non thermal processes. Trends in Food Science & Technology, 23(2), 111–123.

    Article  CAS  Google Scholar 

  • Ovissipour, M., Rasco, B., Tang, J., & Sablani, S. S. (2013). Kinetics of quality changes in whole blue mussel (Mytilus edulis) during pasteurization. Food Research International, 53(1), 141–148.

    Article  CAS  Google Scholar 

  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.

    Article  CAS  Google Scholar 

  • Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science, 38(5), 353–380.

    Article  CAS  Google Scholar 

  • Peleg, M., Normand, M. D., & Corradini, M. G. (2012). The Arrhenius equation revisited. Critical Reviews in Food Science and Nutrition, 52(9), 830–851.

    Article  CAS  Google Scholar 

  • Peng, J., Tang, J., Barrett, D. M., Sablani, S. S., & Powers, J. R. (2014). Kinetics of carrot texture degradation under pasteurization conditions. Journal of Food Engineering, 122, 84–91.

    Article  CAS  Google Scholar 

  • Pereira, R., Martins, R., & Vicente, A. (2008). Goat milk free fatty acid characterization during conventional and ohmic heating pasteurization. Journal of Dairy Science, 91(8), 2925–2937.

    Article  CAS  Google Scholar 

  • Ramaswamy, H., Fvd, V., & Ghazala, S. (1989). An analysis of TDT and Arrhenius methods for handling process and kinetic data. Journal of Food Science, 54(5), 1322–1326.

    Article  Google Scholar 

  • Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Research International, 44(7), 1875–1887.

    Article  CAS  Google Scholar 

  • Riva, M., & Torri, L. (2009). Pineapple shelf life evaluation using an electronic nose. Italian Journal of Food Science, 21, 242–246.

    Google Scholar 

  • Rizvi, A. F., & Tong, C. H. (1997). Fractional conversion for determining texture degradation kinetics of vegetables. Journal of Food Science, 62(1), 1–7.

    Article  CAS  Google Scholar 

  • Rudra, S. G., Sarkar, B. C., & Shivhare, U. S. (2008). Thermal degradation kinetics of chlorophyll in pureed coriander leaves. Food and Bioprocess Technology, 1(1), 91–99.

    Article  Google Scholar 

  • Saguy, I., Kopelman, I. J., & Mizrahi, S. (1978). Simulation of ascorbic acid stability during heat processing and concentration of grapefruit juice. Journal of Food Process Engineering, 2(3), 213–225.

    Article  CAS  Google Scholar 

  • Simpson, R. (2010). Engineering aspects of thermal food processing. Boca Raton: CRC Press, 522 pp.

  • Skrede, G. (1985). Color quality of blackcurrant syrups during storage evaluated by hunter L', a', b'values. Journal of Food Science, 50(2), 514–517.

    Article  Google Scholar 

  • Song, J. Y., An, G. H., & Kim, C. J. (2003). Color, texture, nutrient contents, and sensory values of vegetable soybeans [Glycine max (L.) Merrill] as affected by blanching. Food Chemistry, 83(1), 69–74.

    Article  CAS  Google Scholar 

  • Steinfeld, J.I., Francisco, J.S. & Hase, W.L. (1998). Chemical kinetics and dynamics. Upper Saddle River: Prentice Hall, 560pp.

  • Stoforos, N. G. (1995). Thermal process design. Food Control, 6(2), 81–94.

    Article  Google Scholar 

  • Stumbo, C.R. (1973) Thermobacteriology in food processing. New York: Academic Press, 327pp.

  • Suh, H. J., Noh, D. O., Kang, C. S., Kim, J. M., & Lee, S. W. (2003). Thermal kinetics of color degradation of mulberry fruit extract. Food / Nahrung, 47(2), 132–135.

    Article  Google Scholar 

  • Sungpuag, P., Tangchitpianvit, S., Chittchang, U., & Wasantwisut, E. (1999). Retinol and beta carotene content of indigenous raw and home-prepared foods in Northeast Thailand. Food Chemistry, 64(2), 163–167.

    Article  CAS  Google Scholar 

  • Swinbourne, E.S. (1971) Analysis of kinetic data. London: Nelson, 125pp.

  • Tang, J., Feng, H., & Lau, M. (2002). Microwave heating in food processing. In X. Young & J. Tang (Eds.), Advances in bioprocessing engineering (pp. 1–43). New Jersey: World Scientific Publisher.

    Chapter  Google Scholar 

  • Tang, Z., Mikhaylenko, G., Liu, F., Mah, J. H., Tang, J., Pandit, R., & Younce, F. (2008). Microwave sterilization of sliced beef in gravy in 7-Oz trays. Journal of Food Engineering, 89(4), 375–383.

    Article  Google Scholar 

  • Theodore, L., Saguy, I.S. & Petros, T. (1997). Kinetics of food deterioration and shelf-life prediction. In: Handbook of food engineering practice. New York: CRC Press.

  • Van Boekel, M. A. J. S. (1996). Statistical aspects of kinetic modeling for food science problems. Journal of Food Science, 61(3), 477–486.

    Article  Google Scholar 

  • Van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 139–159.

    Article  Google Scholar 

  • Van Boekel, M. A. J. S. (2008). Kinetic modeling of food quality: a critical review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144–158.

    Article  Google Scholar 

  • Van Loey, A., Fransis, A., Hendrickx, M., Maesmans, G., & Tobback, P. (1995). Kinetics of quality changes of green peas and white beans during thermal processing. Journal of Food Engineering, 24(3), 361–377.

    Article  Google Scholar 

  • Verbeyst, L., Oey, I., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269–274.

    Article  CAS  Google Scholar 

  • Verbeyst, L., Van Crombruggen, K., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2011). Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. Journal of Food Engineering, 105(3), 513–521.

    Article  CAS  Google Scholar 

  • Vieira, M. C., Teixeira, A. A., & Silva, C. L. M. (2000). Mathematical modeling of the thermal degradation kinetics of vitamin C in cupuaçu (Theobroma grandiflorum) nectar. Journal of Food Engineering, 43(1), 1–7.

    Article  CAS  Google Scholar 

  • Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31–40.

    Article  Google Scholar 

  • Vu, T. S., Smout, C., Sila, D. N., LyNguyen, B., Van Loey, A. M. L., & Hendrickx, M. E. G. (2004). Effect of preheating on thermal degradation kinetics of carrot texture. Innovative Food Science & Emerging Technologies, 5(1), 37–44.

    Article  Google Scholar 

  • Wang, Y., Wig, T., Tang, J., & Hallberg, L. (2003). Sterilization of foodstuffs using radio frequency heating. Journal of Food Science, 68(2), 539–544.

    Article  CAS  Google Scholar 

  • Wang, S., Tang, J., Sun, T., Mitcham, E. J., Koral, T., & Birla, S. L. (2006). Considerations in design of commercial radio frequency treatments for postharvest pest control in in-shell walnuts. Journal of Food Engineering, 77(2), 304–312.

    Article  Google Scholar 

  • Wang, J., Luechapattanaporn, K., Wang, Y., & Tang, J. (2012). Radio-frequency heating of heterogeneous food—meat lasagna. Journal of Food Engineering, 108(1), 183–193.

    Article  Google Scholar 

  • Wedzicha, B. L., Goddard, S. J., & Zeb, A. (1993). Approach to the design of model systems for food additive-food component interactions. Food Chemistry, 47(2), 129–132.

    Article  CAS  Google Scholar 

  • Wen, T. N., Prasad, K. N., Yang, B., & Ismail, A. (2010). Bioactive substance contents and antioxidant capacity of raw and blanched vegetables. Innovative Food Science & Emerging Technologies, 11(3), 464–469.

    Article  CAS  Google Scholar 

  • Wu, D., & Sun, D.-W. (2013). Colour measurements by computer vision for food quality control—a review. Trends in Food Science & Technology, 29(1), 5–20.

    Article  Google Scholar 

  • Yoon, Y., Cho, W. J., Park, J. G., Park, J. N., Song, B. S., Kim, J. H., Byun, M. W., Kim, C. J., Sharma, A. K., & Lee, J. W. (2009). Effect of gamma irradiation on shelf-life extension and sensory characteristics of Dak-galbi (marinated diced chicken) during accelerated storage. Korean Journal for Food Science of Animal Resource, 29(5), 573–578.

    Article  Google Scholar 

  • Yu, K., Wu, Y., Hu, Z., Cui, S., & Yu, X. (2011). Modeling thermal degradation of litchi texture: comparison of WeLL model and conventional methods. Food Research International, 44(7), 1970–1976.

    Article  Google Scholar 

  • Zabbia, A., Buys, E. M., & De Kock, H. L. (2011). Undesirable sulphur and carbonyl flavor compounds in UHT milk: a review. Critical Reviews in Food Science and Nutrition, 52(1), 21–30.

    Article  Google Scholar 

  • Zanoni, B., Pagliarini, E., Giovanelli, G., & Lavelli, V. (2003). Modelling the effects of thermal sterilization on the quality of tomato puree. Journal of Food Engineering, 56(2–3), 203–206.

    Article  Google Scholar 

  • Zhang, L., Lyng, J. G., & Brunton, N. P. (2004). Effect of radio frequency cooking on the texture, colour and sensory properties of a large diameter comminuted meat product. Meat Science, 68(2), 257–268.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Ph.D. Programs Foundation of Ministry of Education of China (20120204110022) and the general program of the National Natural Science Foundation of China (No. 31371853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, B., Tang, J., Kong, F. et al. Kinetics of Food Quality Changes During Thermal Processing: a Review. Food Bioprocess Technol 8, 343–358 (2015). https://doi.org/10.1007/s11947-014-1398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1398-3

Keywords

Navigation