Skip to main content
Log in

Development and Characterization of Soy Protein Isolate Emulsion-Based Edible Films with Added Coconut Oil for Olive Oil Packaging: Barrier, Mechanical, and Thermal Properties

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Emulsion-based edible films made of soy protein isolate (SPI), virgin coconut oil (VCO), and soy lecithin (SL) and plasticized with glycerol were prepared using the casting method. The effect of VCO and SL concentrations in SPI films and their in-between interaction were studied through the evaluation of physical (moisture and opacity), mechanical (elongation and tensile strength), water vapor permeability, and thermal properties. The response surface methodology was used to identify the most significant factors in the properties studied. The applicability of SPI emulsion-based films was evaluated as a package for olive oil to be used in small portions. The oxidative stability of the packaged olive oil was monitored by peroxide analyses during 28 days. The incorporation of VCO and SL decreased the moisture content and increased the elongation of the SPI emulsion-based films when compared to the SPI film without these components (control). The opacity of the films increased with the addition of VCO into the protein-based films, but not with the addition of SL or a combination of both constituents. By the other hand, the water vapor permeability was not improved by the incorporation of VCO, SL, or a combination of both. The peroxide value of the olive oil stored in SPI emulsion-based film sachets increased rapidly during the seven first days of storage. After this period, the peroxides increased relatively slow up to 28 days of storage. The peroxide values of the packaged olive oil did not reach the maximum limit recommended by the Codex Alimentarius. Based on these results, this work may be useful for the technological enhancement of emulsion-based films or for food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SPI:

Soy protein isolate

VCO:

Virgin coconut oil

SL:

Soy lecithin

Gly:

Glycerol

FFS:

Film-forming solution

TS:

Tensile strength

ELO:

Elongation at break

WVP:

Water vapor permeability

TGA:

Thermogravimetric analysis

References

  • Al-Hassan, A. A., & Norziah, M. H. (2012). Starch-gelatin edible films: water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1), 108–117.

    Article  CAS  Google Scholar 

  • Andreuccetti, C., Carvalho, R. A., & Grosso, C. R. F. (2009). Effect of hydrophobic plasticizers on functional properties of gelatin-based films. Food Research International, 42(8), 1113–1121.

    Article  CAS  Google Scholar 

  • Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martínez-Bustos, F., & Grosso, C. R. F. (2011). Effect of surfactants on the functional properties of gelatin-based edible films. Journal of Food Engineering, 103(2), 129–136.

    Article  CAS  Google Scholar 

  • Anker, M., Berntsen, J., Hermansson, A.-M., & Stading, M. (2002). Improved water vapor barrier of whey protein films by addition of an acetylated monoglyceride. Innovative Food Science & Emerging Technologies, 3(1), 81–92.

    Article  CAS  Google Scholar 

  • Antoniou, J., Liu, F., Majeed, H., Qazi, H. J., & Zhong, F. (2014). Physicochemical and thermomechanical characterization of tara gum edible films: effect of polyols as plasticizers. Carbohydrate Polymers, 111, 359–365.

    Article  CAS  Google Scholar 

  • AOCS. (2001). Official methods and recommended practices of the American Oil Chemists’ Society (5th ed.). Champaign: AOCS.

    Google Scholar 

  • ASTM Standard D882 (2012). Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken, PA, doi: 10.1520/D0882-12. www.astm.org.

  • ASTM Standard E96/E96M (2013). Standard test methods for water vapor transmission of materials. ASTM International, West Conshohocken, PA. doi: 10.1520/E0096_E0096M. www.astm.org.

  • Atarés, L., de Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384–391.

    Article  Google Scholar 

  • Bertan, L. C., Fakhouri, F. M., Siani, A. C., & Grosso, C. R. F. (2005a). Influence of the addition of lauric acid to films made from gelatin, triacetin and a blend of stearic and palmitic acids. Macromolecular Symposium, 229(1), 143–149.

    Article  CAS  Google Scholar 

  • Bertan, L. C., Tanada-Palmu, P. S., Siani, A. C., & Grosso, C. R. F. (2005b). Effect of fatty acids and ‘Brazilian elemi’ on composite films based on gelatin. Food Hydrocolloids, 19(1), 73–82.

    Article  CAS  Google Scholar 

  • Binsi, P. K., Ravishankar, C. N., & Gopal, S. (2013). Development and characterization of and edible composite film based on chitosan and virgin coconut oil with improved moisture sorption properties. Journal of Food Science, 78(4), E526–E534.

    Article  CAS  Google Scholar 

  • Blanco-Pascual, N., Fernández-Martín, F., & Montero, P. (2014). Jumbo squid (Dosidicus gigas) myofibrillar protein concentrate for edible packaging films and storage stability. LWT- Food Science and Technology, 55(2), 543–550.

    Article  CAS  Google Scholar 

  • Bravin, B., Peressini, D., & Sensidoni, A. (2004). Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films. Journal of Agricultural and Food Chemistry, 52(21), 6448–6455.

    Article  CAS  Google Scholar 

  • Bueschelberger, H.-G. (2004). Lecithins. In R. J. Whitehurst (Ed.), Emulsifiers in food technology (pp. 3–39). Oxford: Blackwell.

    Google Scholar 

  • Chang, C., & Nickerson, M. T. (2014). Effect of plasticizer-type and genipin on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films. European Food Research and Technology, 238(1), 35–46.

    Article  CAS  Google Scholar 

  • Chao, Z., Yue, M., Xiaoyan, Z., & Dan, M. (2010). Development of soybean protein-isolate edible films incorporated with beeswax, Span 20 and glycerol. Journal of Food Science, 75(6), C493–C497.

    Article  Google Scholar 

  • Chen, C.-H., Kuo, W.-S., & Lai, L.-S. (2012). Development of tapioca starch/decolorized hsian-tsao leaf gum-based antimicrobial films: physical characterization and evaluation against Listeria monocytogenes. Food and Bioprocess Technology, 6(6), 1516–1525.

    Article  Google Scholar 

  • Chiumarelli, M., & Hubinger, M. D. (2014). Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 38, 20–27.

    Article  CAS  Google Scholar 

  • Cho, S. Y., & Rhee, C. (2004). Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT- Food Science and Technology, 37(8), 833–839.

    Article  CAS  Google Scholar 

  • Cho, S. Y., Park, J.-W., Batt, H., & Thomas, R. L. (2007). Edible films made from membrane processed soy protein concentrates. LWT- Food Science and Technology, 40(3), 418–423.

    Article  CAS  Google Scholar 

  • Cho, S. Y., Lee, S. Y., & Rhee, C. (2010). Edible oxygen barrier bilayer film pouches from corn zein and soy protein isolate for olive oil packaging. LWT- Food Science and Technology, 43(8), 1234–1239.

    Article  CAS  Google Scholar 

  • CODEX STAN 33-1981 (Rev. 1-1989) (2001). Codex Alimentarius. Fats, oils and related products. Rome: Food and Agricultural Organization of the United Nations.

  • Damodaran, S. (2008). Aminoácidos, Peptídeos e Proteínas. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s food chemistry (4th ed., pp. 217–330). Boca Raton: CRC.

    Google Scholar 

  • Dangaran, K., Tomasula, P. M., & Qi, P. (2009). Structure and function of protein-based edible films and coatings. In M. Embuscado & K. C. Huber (Eds.), Edible film and coatings for food applications (pp. 25–56). New York: Springer.

    Chapter  Google Scholar 

  • Denavi, G., Tapia-Blácido, D. R., Añón, M. C., Sobral, P. J. A., Mauri, A. N., & Menegalli, F. C. (2009). Effects of drying conditions on some physical properties of soy protein films. Journal of Food Engineering, 90(3), 341–349.

    Article  CAS  Google Scholar 

  • Fakhoury, F. M., Martelli, S. M., Bertan, L. C., Yamashita, F., Mei, L. H. I., & Queiroz, F. P. C. (2012). Edible films made from blends of manioc starch and gelatin—influence of different types of plasticizer and different levels of macromolecules on their properties. Food Science & Technology, 49(1), 149–154.

    CAS  Google Scholar 

  • Friesen, K., Chang, C., & Nickerson, M. (2015). Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: mechanical, barrier and cross-linking properties. Food Chemistry, 172, 18–23.

    Article  CAS  Google Scholar 

  • Gallo, J.-A. Q., Debeaufort, F., Callegarin, F., & Voilley, A. (2000). Lipid hydrophobicity, physical state and distribution effects on the properties of emulsion-based edible films. Journal of Membrane Science, 180, 37–46.

    Article  Google Scholar 

  • Galus, S., Mathieu, H., Lenart, A., & Debeaufort, F. (2012). Effect of modified starch or maltodextrin incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films. Innovative Food Science & Emerging Technologies, 16, 148–154.

    Article  CAS  Google Scholar 

  • Garcia, L. C., Pereira, L. M., de Luca Sarantópoulos, C. I. G., & Hubinger, M. D. (2010). Selection of an edible starch coating for minimally processed strawberry. Food and Bioprocess Technology, 3(6), 834–842.

    Article  CAS  Google Scholar 

  • Gofferje G, Schmid M, Stäbler A. Characterization of Jatropha curcas L. protein cast films with respect to packaging relevant properties. Int J Polym Sci. 2014; ID 630585.

  • Gontard, N., Guilbert, S., & Cuq, J.-L. (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57(1), 190–195.

    Article  CAS  Google Scholar 

  • Gontard, N., Duchez, C., Cuq, J.-L., & Guilbert, S. (1994). Edible blended biofilms of wheat gluten and lipids: water vapor permeability and other physical properties. International Journal of Food Science and Technology, 29(1), 39–50.

    Article  CAS  Google Scholar 

  • González, A., Strumia, M. C., & Igarzabal, C. I. (2011). Cross-linked soy protein as material for biodegradable films: synthesis, characterization and biodegradation. Journal of Food Engineering, 106(4), 331–338.

    Article  Google Scholar 

  • Guerrero, P., Hanani, Z. A. N., Kerry, J. P., & de la Caba, K. (2011). Characterization of soy protein-based films prepared with acids and oils by compression. Journal of Food Engineering, 107(1), 41–49.

    Article  CAS  Google Scholar 

  • Guilbert, S., Gontard, N., & Gorris, L. G. M. (1996). Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT- Food Science and Technology, 29(1-2), 10–17.

    Article  CAS  Google Scholar 

  • Hammann, F., & Schmid, M. (2014). Determination and quantification of molecular interactions in protein films: a review. Materials, 7(12), 7975–7996.

    Article  Google Scholar 

  • Hopkins, E. J., Chang, C., Lam, R. S. H., & Nickerson, M. T. (2015). Effects of flaxseed oil concentration on the performance of a soy protein isolate-based emulsion-type film. Food Research International, 67, 418–425.

    Article  CAS  Google Scholar 

  • Jayadas, N. H., & Nair, K. P. (2006). Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal, oxidative and low temperature properties. Tribology International, 39(9), 873–878.

    Article  CAS  Google Scholar 

  • Jost, V., Kobsik, K., Schmid, M., & Noller, K. (2014). Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydrate Polymers, 110, 309–319.

    Article  CAS  Google Scholar 

  • Keerati-U-Rai, M., & Corredig, M. (2010). Heat-induced changes occurring in oil/water emulsions stabilized by soy glycinin and β-conglycinin. Journal of Agricultural and Food Chemistry, 58(16), 9171–9180.

    Article  CAS  Google Scholar 

  • Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A., & Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innovative Food Science and Emerging, 11(3), 503–510.

    Article  CAS  Google Scholar 

  • Kowalczyk, D., & Baraniak, B. (2014). Effect of candelilla wax on functional properties of biopolymer emulsion films—a comparative study. Food Hydrocolloids, 41, 195–209.

    Article  CAS  Google Scholar 

  • Krochta, J. M., & Miller, K. S. (1997). Oxygen and aroma barrier properties of edible films: a review. Trends in Food Science and Technology, 8(7), 228–237.

    Article  Google Scholar 

  • Kumar, P., Sandeep, K. P., Alavi, S., Truong, V. D., & Gorga, R. E. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Journal of Food Engineering, 100(3), 480–489.

    Article  CAS  Google Scholar 

  • Limpisophon, K., Tanaka, M., & Osako, K. (2010). Characterisation of gelatin-fatty acid emulsion films based on blue shark (Prionace glauca) skin gelatin. Food Chemistry, 122(4), 1095–1101.

    Article  CAS  Google Scholar 

  • Marina, A. M., Che Man, Y. B., & Amin, I. (2009a). Virgin coconut oil: emerging functional food oil. Trends in Food Science and Technology, 20(10), 481–487.

    Article  CAS  Google Scholar 

  • Marina, A. M., Che Man, Y. B., Nazimah, S. A. H., & Amin, I. (2009b). Chemical properties of virgin coconut oil. Journal of American Oil Chemists’ Society, 86(4), 301–307.

    Article  CAS  Google Scholar 

  • Marquez, G. R., Di Pierro, P., Esposito, M., Mariniello, L., & Porta, R. (2014). Application of transglutaminase-crosslinked whey protein/pectin films as water barrier coatings in fried and baked foods. Food and Bioprocess Technology, 7(2), 447–455.

    Article  Google Scholar 

  • McHugh, T. H., & de Avena-Bustillos, R. J. (2012). Applications of edible films and coatings to processed foods. In E. A. Baldwin, R. Hagenmaier, & J. Bai (Eds.), Edible coatings and films to improve food quality (2nd ed., pp. 291–318). Boca Raton: CRC.

    Google Scholar 

  • Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: a review. Trends in Food Science and Technology, 8(7), 228–237.

    Article  CAS  Google Scholar 

  • Monedero, F. M., Fabra, M. J., Talens, P., & Chiralt, A. (2009). Effect of oleic acid-beeswax mixtures on mechanical, optical and water barrier properties of soy protein isolate based films. Journal of Food Engineering, 91(4), 509–515.

    Article  CAS  Google Scholar 

  • Nishinari, K., Fang, Y., Guo, S., & Phillips, G. O. (2014). Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocolloids, 39(301–318), 2014.

    Google Scholar 

  • O’Brien, R. D. (2009). Raw materials. In: Fats and oils: formulating and processing for applications, 3rd ed. (3rd, pp. 1-72). Boca Raton: CRC.

  • Ou, S., Wang, Y., Tang, S., Huang, C., & Jackson, M. G. (2005). Role of ferulic acid in preparing edible films from soy protein isolate. Journal of Food Engineering, 70(2), 205–210.

    Article  Google Scholar 

  • Ozdemir, M., & Floros, J. D. (2008). Optimization of edible whey protein films containing preservatives for mechanical and optical properties. Journal of Food Engineering, 84(1), 116–123.

    Article  CAS  Google Scholar 

  • Pan, H., Jiang, B., Chen, J., & Jin, Z. (2014a). Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films. Carbohydrate Polymers, 112, 94–101.

    Article  CAS  Google Scholar 

  • Pan, H., Jiang, B., Chen, J., & Jin, Z. (2014b). Blend-modification of soy protein/lauric acid edible films using polysaccharides. Food Chemistry, 151, 1–6.

    Article  CAS  Google Scholar 

  • Pavlath, A. E., & Orts, W. (2009). Edible films and coatings: why, what, and how? In M. E. Embuscado & K. C. Huber (Eds.), Edible films and coatings for food applications (pp. 1–24). New York: Springer.

    Chapter  Google Scholar 

  • Peng, Y., Yin, L., & Yunfei, L. (2013). Combined effects of lemon essential oil and surfactants on physical and structural properties of chitosan films. International Journal of Food Science and Technology, 48(1), 44–50.

    Article  CAS  Google Scholar 

  • Peychès-Bach, A., Moutounet, M., Peyron, S., & Chalier, P. (2009). Factors determining the transport coefficients of aroma compounds through polyethylene films. Journal of Food Engineering, 95(1), 45–53.

    Article  Google Scholar 

  • Qu, P., Huang, H., Wu, G., Sun, E., Chang, Z. (2015). Effects of hydrolysis degree of soy protein isolate on the structure and performance of hydrolyzed soy protein isolate/urea/formaldehyde copolymer resin. Journal of Applied Polymer Science, 132(7), doi: 10.1002/APP.41469.

  • Ramos, O. L., Reinas, I., Silva, S., Fernandes, J. C., Cerqueira, M. A., Pereira, R. N., Vicente, A. A., Poças, M. F., Pintado, M. E., & Malcata, F. X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110–122.

    Article  CAS  Google Scholar 

  • Rezvani, E., Schleining, G., Sümen, G., & Taherian, A. R. (2013). Assessment of physical and mechanical properties of sodium caseinate and stearic acid based film-forming emulsions and edible films. Journal of Food Engineering, 116(2), 598–605.

    Article  CAS  Google Scholar 

  • Rhim, J. W., Gennadios, A., Weller, C. L., & Hanna, M. A. (2002). Sodium dodecyl sulfate treatment improves properties of cast films from soy protein isolate. Industrial Crops and Products, 15(3), 199–205.

    Article  CAS  Google Scholar 

  • Rhim, J.-W., Mohanty, K. A., Singh, S. P., & Ng, P. K. W. (2006). Preparation and properties of biodegradable multilayer films based on soy protein isolate and poly(lactide). Industrial and Engineering Chemistry Research, 45(9), 3059–3066.

    Article  CAS  Google Scholar 

  • Schmid, M., Sängerlaub, S., Wege, L., & Stäble, A. (2014). Properties of transglutaminase crosslinked whey protein isolate coatings and cast films. Packaging Technology and Science, 27(10), 799–817.

    Article  CAS  Google Scholar 

  • Seneviratne, K. N., Hapuarachchl, C. D., & Ekanayake, S. (2009). Comparison of the phenolic-dependent antioxidant properties of coconut oil extracted under cold and hot conditions. Food Chemistry, 114(4), 1444–1449.

    Article  CAS  Google Scholar 

  • Song, X., Zhou, C., Fu, F., Chen, Z., & Wu, Q. (2013). Effect of high-pressure homogenization on particle size and film properties of soy protein isolate. Industrial Crops and Products, 43, 538–544.

    Article  CAS  Google Scholar 

  • Sothornvit, R., & Krochta, J. M. (2005). Plasticizers in edible films and coatings. In J. H. Han (Ed.), Innovations in food packaging (pp. 403–433). London: Elsevier Academic.

    Chapter  Google Scholar 

  • Souza, C. O., Silva, L. T., Silva, J. R., López, J. A., Veiga-Santos, P., & Druzian, J. I. (2011). Mango and acerola pulp as antioxidant additives in cassava starch bio-based film. Journal of Agricultural and Food Chemistry, 59(6), 2248–2254.

    Article  CAS  Google Scholar 

  • Stauffer, C. E. (2005). Emulsifiers for the food industry. In F. Sahidi (Ed.), Bailey’s industrial oil and fat products: edible oil and fat products: products and applications (vol. 4) (6th ed., pp. 229–268). Hoboken: Wiley.

    Google Scholar 

  • Su, J.-F., Huang, Z., Yuan, X.-Y., Wang, X.-Y., & Li, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolated blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers, 79(1), 145–153.

    Article  CAS  Google Scholar 

  • Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2014). Structural, morphological and thermal behavior characterisations of fish gelatin incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids, 41, 33–43.

    Article  CAS  Google Scholar 

  • USDA (2015). United States Department of Agriculture. Data and statistics: soybeans: world supply and distribution. Available at: http://www.usda.gov/wps/portal/usda/usdahome?navid=DATA_STATISTICS. Accessed 24 March 2015.

  • Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein-chitosan-sunflower oil edible film: mechanical, barrier and structural properties. LWT- Food Science and Technology, 50(2), 531–537.

    Article  CAS  Google Scholar 

  • Wan, V. C.-H., Kim, M. S., & Lee, S.-Y. (2005). Water vapor permeability and mechanical properties of soy protein isolate edible films composed of different plasticizer combinations. Journal of Food Science, 70(6), 387–391.

    Article  Google Scholar 

  • Wang, Z., Zhou, J., Wang, X.-X., Zhang, N., Sun, X.-X., & Ma, Z.-S. (2014). The effects of ultrasonic/microwave assisted treatment on the water vapor barrier properties of soybean protein isolate-based oleic acid/stearic acid blend edible films. Food Hydrocolloids, 35, 51–58.

    Article  Google Scholar 

  • Winkler, H., Vorwerg, W., & Schmid, M. (2015). Synthesis of hydrophobic whey protein isolate by acylation with fatty acids. European Polymer Journal, 62, 10–18.

    Article  CAS  Google Scholar 

  • Yang, L., & Paulson, A. T. (2000). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Research International, 33(7), 571–578.

    Article  CAS  Google Scholar 

  • Zahedi, Y., Ghanbarzadeh, B., & Sedaghat, N. (2010). Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids. Journal of Food Engineering, 100(1), 102–108.

    Article  CAS  Google Scholar 

  • Zhao, Y. (2012). Application of commercial coatings. In E. A. Baldwin, R. Hagenmaier, & J. Bai (Eds.), Edible coatings and films to improve food quality (2nd ed., pp. 319–332). Boca Raton: CRC.

    Google Scholar 

Download references

Acknowledgments

The authors thank CAPES (Coordination for the Improvement of Higher Education Personnel), the Post-Graduation Program in Food Engineering (UFPR), and IMCOPA for supplying the soy lecithin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Carpiné.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpiné, D., Dagostin, J.L.A., Bertan, L.C. et al. Development and Characterization of Soy Protein Isolate Emulsion-Based Edible Films with Added Coconut Oil for Olive Oil Packaging: Barrier, Mechanical, and Thermal Properties. Food Bioprocess Technol 8, 1811–1823 (2015). https://doi.org/10.1007/s11947-015-1538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1538-4

Keywords

Navigation