Skip to main content

Advertisement

Log in

microRNAs in Cartilage Development, Homeostasis, and Disease

  • Skeletal Development (E Schipani and E Zelzer, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) regulate gene expression mainly at the posttranscriptional level. Many different miRNAs are expressed in chondrocytes, and each individual miRNA can regulate hundreds of target genes, creating a complex gene regulatory network. Experimental evidence suggests that miRNAs play significant roles in various aspects of cartilage development, homeostasis, and pathology. The possibility that miRNAs can be novel therapeutic targets for cartilage diseases led to vigorous investigations to understand the role of individual miRNAs in skeletal tissues. Here, we summarize our current understanding of miRNAs in chondrocytes and cartilage. In the first part, we discuss roles of miRNAs in growth plate development and chondrocyte differentiation. In the second part, we put a particular focus on articular cartilage and discuss the significance of variety of findings in the context of osteoarthritis, the most common degenerative joint disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–6.

    Article  PubMed  CAS  Google Scholar 

  2. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22:85–9.

    Article  PubMed  CAS  Google Scholar 

  3. Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol. 1997;17:2336–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Yamashita S, Miyaki S, Kato Y, et al. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem. 2012;287:22206–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Yoshida CA, Yamamoto H, Fujita T, et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 2004;18:952–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 2001;15:467–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Tetreault N, De Guire V. miRNAs: their discovery, biogenesis and mechanism of action. Clin Biochem. 2013;46:842–5.

    Article  PubMed  CAS  Google Scholar 

  8. Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A. 2008;105:1949–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Papaioannou G, Inloes JB, Nakamura Y, Paltrinieri E, Kobayashi T. let-7 and miR-140 microRNAs coordinately regulate skeletal development. Proc Natl Acad Sci U S A. 2013;110:E3291–300. This in vivo study shows the importance of let-7 miRNAs in growth plate chondrocyte proliferation. It also demonstrates that simultaneous reductions in let-7 miRNAs and miR-140 in chondrocytes cause a substantial growth defect due to reduced proliferation and altered differentiation in growth plate chondrocytes.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Yang J, Qin S, Yi C, et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 2011;585:2992–7. These studies show the chondrocyte-specific expression of miR-140 and its regulation by Sox9.

    Article  PubMed  CAS  Google Scholar 

  11. Nakamura Y, He X, Kato H, et al. Sox9 is upstream of microRNA-140 in cartilage. Appl Biochem Biotechnol. 2012;166:64–71. These studies show the chondrocyte-specific expression of miR-140 and its regulation by Sox9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Nakamura Y, Yamamoto K, He X, et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nat Commun. 2011;2:251.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24:1173–85. This in vivo study describes mouse phenotypes caused by miR-140-loss in mice. miR-140-deficiency causes a mild growth defect, craniofacial abnormalities, and accelerated development of osteoarthritis in aged or surgically manipulated mice.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 2011;31:3019–28. This in vivo study independently shows that miR-140-loss causes a mild growth defect due to altered chondrocyte differentiation in mice. This study experimentally identified Dnpep as a miR-140 target.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Eberhart JK, He X, Swartz ME, et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet. 2008;40:290–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580:4214–7.

    Article  PubMed  CAS  Google Scholar 

  17. Pais H, Nicolas FE, Soond SM, et al. Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA. 2010;16:489–94.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Karlsen TA, Jakobsen RB, Mikkelsen TS, Brinchmann JE. microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells Dev. 2014;23:290–304.

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe T, Sato T, Amano T, et al. Dnm3os, a non-coding RNA, is required for normal growth and skeletal development in mice. Dev Dyn. 2008;237:3738–48.

    Article  PubMed  CAS  Google Scholar 

  20. Suomi S, Taipaleenmaki H, Seppanen A, et al. MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Reg Syst Biol. 2008;2:177–91.

    CAS  Google Scholar 

  21. Laine SK, Alm JJ, Virtanen SP, Aro HT, Laitala-Leinonen TK. MicroRNAs miR-96, miR-124, and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells. J Cell Biol. 2012;113:2687–95.

    CAS  Google Scholar 

  22. Lin EA, Kong L, Bai XH, Luan Y, Liu CJ. miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem. 2009;284:11326–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One. 2011;6:e21679.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Ohgawara T, Kubota S, Kawaki H, et al. Regulation of chondrocytic phenotype by micro RNA 18a: involvement of Ccn2/Ctgf as a major target gene. FEBS Lett. 2009;583:1006–10.

    Article  PubMed  CAS  Google Scholar 

  25. Sumiyoshi K, Kubota S, Ohgawara T, et al. Identification of miR-1 as a micro RNA that supports late-stage differentiation of growth cartilage cells. Biochem Biophys Res Commun. 2010;402:286–90.

    Article  PubMed  CAS  Google Scholar 

  26. Song J, Kim D, Chun CH, Jin EJ. MicroRNA-375, a new regulator of cadherin-7, suppresses the migration of chondrogenic progenitors. Cell Signal. 2013;25:698–706.

    Article  PubMed  Google Scholar 

  27. Martinez-Sanchez A, Murphy CL. miR-1247 functions by targeting cartilage transcription factor SOX9. J Biol Chem. 2013;288:30802–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Sumiyoshi K, Kubota S, Ohgawara T, et al. Novel role of miR-181a in cartilage metabolism. J Cell Biol. 2013;114:2094–100.

    CAS  Google Scholar 

  29. Kim D, Song J, Jin EJ. MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem. 2010;285:26900–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Paik S, Jung HS, Lee S, Yoon DS, Park MS, Lee JW. miR-449a regulates the chondrogenesis of human mesenchymal stem cells through direct targeting of lymphoid enhancer-binding factor-1. Stem Cells Dev. 2012;21:3298–308.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Guerit D, Philipot D, Chuchana P, et al. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells. PLoS One. 2013;8:e62582.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Lin X, Wu L, Zhang Z, et al. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Min Res. 2013;29:1575–85.

  33. Guerit D, Brondello JM, Chuchana P, et al. FOXO3A regulation by miRNA-29a Controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cells Dev. 2014;23:1195–205.

    Article  PubMed  CAS  Google Scholar 

  34. Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009;11:224.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 2008;3:e3740.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tardif G, Hum D, Pelletier JP, Duval N, Martel-Pelletier J. Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 2009;10:148.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tardif G, Pelletier JP, Fahmi H, et al. NFAT3 and TGF-beta/SMAD3 regulate the expression of miR-140 in osteoarthritis. Arthritis Res Ther. 2013;15:R197.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song J, Kim D, Lee CH, Lee MS, Chun CH, Jin EJ. MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. J Biomed Sci. 2013;20:31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Swingler TE, Wheeler G, Carmont V, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 2012;64:1909–19.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang M, Liu L, Xiao T. Guo W [Detection of the expression level of miR-140 using real time fluorescent quantitative PCR in knee synovial fluid of osteoarthritis patients]. Zhong nan da xue xue bao Yi xue ban. 2012;37:1210–4.

    PubMed  CAS  Google Scholar 

  41. Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, Haqqi TM. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62:1361–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Liang ZJ, Zhuang H, Wang GX, et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1beta-stimulated human articular chondrocyte C28/I2 cells. Inflamm Res. 2012;61:503–9.

    Article  PubMed  CAS  Google Scholar 

  43. Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60:2723–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Yang B, Kang X, Xing Y, et al. Effect of microRNA-145 on IL-1beta-induced cartilage degradation in human chondrocytes. FEBS Lett. 2014;588:2344–52.

    Article  PubMed  CAS  Google Scholar 

  45. Martinez-Sanchez A, Dudek KA, Murphy CL. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem. 2012;287:916–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Dai L, Zhang X, Hu X, Zhou C, Ao Y. Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther. 2012;14:R268.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Kim D, Song J, Han J, Kim Y, Chun CH, Jin EJ. Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-alpha1. Cell Signal. 2013;25:2878–87.

    Article  PubMed  CAS  Google Scholar 

  48. Peffers MJ, Liu X, Clegg PD. Transcriptomic signatures in cartilage ageing. Arthritis Res Ther. 2013;15:R98.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kongcharoensombat W, Nakasa T, Ishikawa M, et al. The effect of microRNA-21 on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Knee Surg Sports Traumatol Arthro. 2010;18:1679–84.

    Article  Google Scholar 

  50. Ukai T, Sato M, Akutsu H, Umezawa A, Mochida J. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J Orthop Res. 2012;30:1915–22.

    Article  PubMed  CAS  Google Scholar 

  51. Ham O, Lee CY, Song BW, et al. Upregulation of miR-23b enhances the autologous therapeutic potential for degenerative arthritis by targeting PRKACB in synovial fluid-derived mesenchymal stem cells from patients. Mol Cells. 2014;37:449–56.

  52. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol. 2008;18:131–40.

    Article  PubMed  CAS  Google Scholar 

  53. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil. 2009;17:464–72.

    Article  PubMed  CAS  Google Scholar 

  55. Yamasaki K, Nakasa T, Miyaki S, et al. Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 2009;60:1035–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Li J, Huang J, Dai L, et al. miR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther. 2012;14:R75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Jin L, Zhao J, Jing W, et al. Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro. Int J Mol Med. 2014;34:451–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Wang JH, Shih KS, Wu YW, Wang AW, Yang CR. Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1beta signaling in osteoarthritis fibroblast-like synoviocytes. Osteoarthr Cartil. 2013;21:1987–96.

    Article  PubMed  CAS  Google Scholar 

  59. Borgonio Cuadra VM, Gonzalez-Huerta NC, Romero-Cordoba S, Hidalgo-Miranda A, Miranda-Duarte A. Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS One. 2014;9:e97690.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Santini P, Politi L, Vedova PD, Scandurra R, Scotto d’ Abusco A. The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. Rheumatol Int. 2014;34:711–6.

    Article  PubMed  CAS  Google Scholar 

  61. Song J, Kim D, Chun CH, Jin EJ. MicroRNA-9 regulates survival of chondroblasts and cartilage integrity by targeting protogenin. Cell Commun Signal. 2013;11:66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Abouheif MM, Nakasa T, Shibuya H, Niimoto T, Kongcharoensombat W, Ochi M. Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology. 2010;49:2054–60.

    Article  PubMed  CAS  Google Scholar 

  63. Akhtar N, Haqqi TM. MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann Rheumatol Dis. 2012;71:1073–80.

    Article  CAS  Google Scholar 

  64. Zhang Y, Jia J, Yang S, Liu X, Ye S, Tian H. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med. 2014;46:e79.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Beyer C, Zampetaki A, Lin NY, et al. Signature of circulating microRNAs in osteoarthritis. Ann Rheumat Dis. 2014;0:1–7.

  66. Philipot D, Guerit D, Platano D, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodelling in osteoarthritis. Arthritis Res Ther. 2014;16:R58.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vonk LA, Kragten AH, Dhert WJ, Saris DB, Creemers LB. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthr Cartil. 2014;22:145–53.

    Article  PubMed  CAS  Google Scholar 

  68. Park SJ, Cheon EJ, Lee MH, Kim HA. MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis Rheum. 2013;65:3141–52.

    Article  PubMed  CAS  Google Scholar 

  69. Qi Y, Ma N, Yan F, et al. The expression of intronic miRNAs, miR-483 and miR-483*, and their host gene, Igf2, in murine osteoarthritis cartilage. Int J Biol Macromol. 2013;61:43–9.

    Article  PubMed  CAS  Google Scholar 

  70. Park SJ, Cheon EJ, Kim HA. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1beta-induced catabolic effects in human articular chondrocytes. Osteoarthr Cartil. 2013;21:981–9.

    Article  PubMed  CAS  Google Scholar 

  71. Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res Ther. 2013;15:R28.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Song J, Lee M, Kim D, Han J, Chun CH, Jin EJ. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun. 2013;431:210–4.

    Article  PubMed  CAS  Google Scholar 

  73. Steck E, Boeuf S, Gabler J, et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med. 2012;90:1185–95.

    Article  PubMed  CAS  Google Scholar 

  74. Xu J, Kang Y, Liao WM, Yu L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One. 2012;7:e31861.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Hu F, Zhu W, Wang L. MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4. Arch Oral Biol. 2012;58:192–9.

  76. Dunn W, DuRaine G, Reddi AH. Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum. 2009;60:2333–9.

    Article  PubMed  Google Scholar 

  77. Guan YJ, Yang X, Wei L, Chen Q. MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB J. 2011;25:4457–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Marc Wein for helpful discussion. This work was supported by the National Institutes of Health [AR054500 and AR056645 to T.K.]

Compliance with Ethics Guidelines

Conflict of Interest

F. Mirzamohammadi, G. Papaioannou, and T. Kobayashi all declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzamohammadi, F., Papaioannou, G. & Kobayashi, T. microRNAs in Cartilage Development, Homeostasis, and Disease. Curr Osteoporos Rep 12, 410–419 (2014). https://doi.org/10.1007/s11914-014-0229-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0229-9

Keywords

Navigation