Skip to main content

Advertisement

Log in

Review of New Guidelines for the Management of Glucocorticoid Induced Osteoporosis

  • Quality of Care in Osteoporosis (SL Silverman, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The chronic use of glucocorticoids results in osteoporosis. Several sets of guidelines have been published on the management of glucocorticoid induced osteoporosis (GIO). These guidelines vary on their focus and highlight different aspects of the current concepts in the management of GIO. In this current article, we summarize recent guidelines for management of GIO and highlight similarities and differences as well as address some of the controversies generated by these guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Diez-Perez A et al. Regional differences in treatment for osteoporosis. The Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone. 2011;9(3):493–8.

    Article  Google Scholar 

  2. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.

    Article  PubMed  Google Scholar 

  3. Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis: 2001 update. Arthritis Rheum. 2001;44(7):1496–503.

    Google Scholar 

  4. Bone and Tooth Society of Great Britain. Guidelines on the prevention and treatment of glucocorticoid-induced osteoporosis. London: Royal College of Physicians; 2003.

    Google Scholar 

  5. Devogelaer JP et al. Evidence-based guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis: a consensus document of the Belgian Bone Club. Osteoporos Int. 2006;17(1):8–19.

    Article  PubMed  CAS  Google Scholar 

  6. • Grossman JM et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 2010;62(11):1515–26. These guidelines provide a risk stratification strategy for the assessment of those patients with GIO who need treatment.

    Article  Google Scholar 

  7. • Lekamwasam S et al. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int. 2012;23(9):2257–76. These guidelines provide additional information about risk stratification especially for countries in which bone density testing is not freely available. Additionally, strength of evidence for various interventions is discussed.

    Article  PubMed  CAS  Google Scholar 

  8. • Pereira RM et al. Guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis. Rev Bras Reumatol. 2012;52(4):580–93. These are updated guidelines that provide detailed analysis of the strength of the evidence for various recommendations for the assessment and management of GIO.

    Article  PubMed  Google Scholar 

  9. • Leib ES et al. Official positions for FRAX((R)) clinical regarding glucocorticoids: the impact of the use of glucocorticoids on the estimate by FRAX((R)) of the 10 year risk of fracture from Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX((R)). J Clin Densitom. 2011;14(3):212–9. This article provides the rationale to adjust FRAX based on corticosteroid dose.

    Article  PubMed  Google Scholar 

  10. • Kanis JA et al. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int. 2011;22(3):809–16. This article provides guidelines for adjustment of FRAX according to GC dose.

    Article  PubMed  CAS  Google Scholar 

  11. Kanis JA et al. Interpretation and use of FRAX in clinical practice. Osteoporos Int. 2011;22(9):2395–411.

    Article  PubMed  CAS  Google Scholar 

  12. Kanis JA et al. Case finding for the management of osteoporosis with FRAX–assessment and intervention thresholds for the UK. Osteoporos Int. 2008;19(10):1395–408.

    Article  PubMed  CAS  Google Scholar 

  13. Compston J et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas. 2009;62(2):105–8.

    Article  PubMed  CAS  Google Scholar 

  14. Morris HA et al. Malabsorption of calcium in corticosteroid-induced osteoporosis. Calcif Tissue Int. 1990;46(5):305–8.

    Article  PubMed  CAS  Google Scholar 

  15. Sambrook P et al. Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin. N Engl J Med. 1993;328(24):1747–52.

    Article  PubMed  CAS  Google Scholar 

  16. Yeap SS et al. A comparison of calcium, calcitriol, and alendronate in corticosteroid-treated premenopausal patients with systemic lupus erythematosus. J Rheumatol. 2008;35(12):2344–7.

    Article  PubMed  CAS  Google Scholar 

  17. Richy F et al. Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos Int. 2004;15(4):301–10.

    Article  PubMed  CAS  Google Scholar 

  18. Sambrook P et al. Effect of calcitriol on bone loss after cardiac or lung transplantation. J Bone Miner Res. 2000;15(9):1818–24.

    Article  PubMed  CAS  Google Scholar 

  19. Amin S et al. The role of vitamin D in corticosteroid-induced osteoporosis: a meta-analytic approach. Arthritis Rheum. 1999;42(8):1740–51.

    Article  PubMed  CAS  Google Scholar 

  20. Homik J et al. Calcium and vitamin D for corticosteroid-induced osteoporosis. Cochrane Database Syst Rev. 2000;2, CD000952.

    PubMed  Google Scholar 

  21. Richy F et al. Vitamin D analogs vs native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif Tissue Int. 2005;76(3):176–86.

    Article  PubMed  CAS  Google Scholar 

  22. Sambrook PN et al. Prevention and treatment of glucocorticoid-induced osteoporosis: a comparison of calcitriol, vitamin D plus calcium, and alendronate plus calcium. J Bone Miner Res. 2003;18(5):919–24.

    Article  PubMed  CAS  Google Scholar 

  23. Saag KG et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med. 1998;339(5):292–9.

    Article  PubMed  CAS  Google Scholar 

  24. de Nijs RN et al. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N Engl J Med. 2006;355(7):675–84.

    Article  PubMed  Google Scholar 

  25. Adachi JD et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum. 2001;44(1):202–11.

    Article  PubMed  CAS  Google Scholar 

  26. Reid DM et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J Bone Miner Res. 2000;15(6):1006–13.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen S et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 1999;42(11):2309–18.

    Article  PubMed  CAS  Google Scholar 

  28. Reid DM et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicenter, double-blind, double-dummy, randomized controlled trial. Lancet. 2009;373(9671):1253–63.

    Article  PubMed  CAS  Google Scholar 

  29. Ringe JD et al. Three-monthly ibandronate bolus injection offers favourable tolerability and sustained efficacy advantage over two years in established corticosteroid-induced osteoporosis. Rheumatology (Oxford). 2003;42(6):743–9.

    Article  CAS  Google Scholar 

  30. Ringe JD et al. Intermittent intravenous ibandronate injections reduce vertebral fracture risk in corticosteroid-induced osteoporosis: results from a long-term comparative study. Osteoporos Int. 2003;14(10):801–7.

    Article  PubMed  CAS  Google Scholar 

  31. Hakala M et al. Once-monthly oral ibandronate provides significant improvement in bone mineral density in postmenopausal women treated with glucocorticoids for inflammatory rheumatic diseases: a 12-month, randomized, double-blind, placebo-controlled trial. Scand J Rheumatol. 2012;41(4):260–6.

    Article  PubMed  CAS  Google Scholar 

  32. Plotkin LI et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104(10):1363–74.

    Article  PubMed  CAS  Google Scholar 

  33. Weinstein RS et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109(8):1041–8.

    PubMed  CAS  Google Scholar 

  34. Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  35. Jadu F et al. A retrospective study assessing the incidence, risk factors and comorbidities of pamidronate-related necrosis of the jaws in multiple myeloma patients. Ann Oncol. 2007;18(12):2015–9.

    Article  PubMed  CAS  Google Scholar 

  36. Langdahl BL et al. Teriparatide vs alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. Osteoporos Int. 2009;20(12):2095–104.

    Article  PubMed  CAS  Google Scholar 

  37. Saag KG et al. Effects of teriparatide vs alendronate for treating glucocorticoid-induced osteoporosis: 36-month results of a randomized, double-blind, controlled trial. Arthritis Rheum. 2009;60(11):3346–55.

    Article  PubMed  CAS  Google Scholar 

  38. Devogelaer JP et al. Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J Rheumatol. 2010;37(1):141–8.

    Article  PubMed  CAS  Google Scholar 

  39. Gluer CC, et al. Comparative effects of teriparatide and risedronate in glucocorticoid-induced osteoporosis in men: 18-month results of the EuroGIOPs trial. J Bone Miner Res. 2013.

  40. MacAdams MR, White RH, Chipps BE. Reduction of serum testosterone levels during chronic glucocorticoid therapy. Ann Intern Med. 1986;104(5):648–51.

    Article  PubMed  CAS  Google Scholar 

  41. Laatikainen AK et al. Bone mineral density in perimenopausal women with asthma: a population-based cross-sectional study. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1179–85.

    Article  PubMed  CAS  Google Scholar 

  42. Reid IR et al. Testosterone therapy in glucocorticoid-treated men. Arch Intern Med. 1996;156(11):1173–7.

    Article  PubMed  CAS  Google Scholar 

  43. Cranney A, et al. Calcitonin for the treatment and prevention of corticosteroid-induced osteoporosis. Cochrane Database Syst Rev, 20;2:CD001983.

  44. • Rizzoli R et al. Subtrochanteric fractures after long-term treatment with bisphosphonates: a European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis, and International Osteoporosis Foundation Working Group Report. Osteoporos Int. 2011;22(2):373–90. This study summarizes the research on the occurrence of sub-trochanteric femur fractures and their association with bisphosphonates.

    Article  PubMed  CAS  Google Scholar 

  45. • Park-Wyllie Ly MMMJDN et al. Bisphosphonate use and the risk of subtrochanteric or femoral shaft fractures in older women. JAMA. 2011;305(8):783–9. Another important study that links bisphosphonates to the occurrence of sub-trochanteric fractures.

    Article  PubMed  Google Scholar 

  46. Wang Z, Bhattacharyya T. Trends in incidence of subtrochanteric fragility fractures and bisphosphonate use among the US elderly, 1996–2007. J Bone Min Res. 2011;26(3):553–60.

    Article  CAS  Google Scholar 

  47. Giusti A et al. Atypical fractures and bisphosphonate therapy: a cohort study of patients with femoral fracture with radiographic adjudication of fracture site and features. Bone. 2011;48(5):966–71.

    Article  PubMed  CAS  Google Scholar 

  48. Cummings SR et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  PubMed  CAS  Google Scholar 

  49. Hofbauer LC et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140(10):4382–9.

    Article  PubMed  CAS  Google Scholar 

  50. Sivagurunathan S et al. Influence of glucocorticoids on human osteoclast generation and activity. J Bone Miner Res. 2005;20(3):390–8.

    Article  PubMed  CAS  Google Scholar 

  51. Dore RK et al. Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann Rheum Dis. 2010;69(5):872–5.

    Article  PubMed  CAS  Google Scholar 

  52. Boonen S et al. Inhibition of cathepsin K for treatment of osteoporosis. Curr Osteoporos Rep. 2012;10(1):73–9.

    Article  PubMed  Google Scholar 

  53. Brixen K, et al. Bone density, turnover, and estimated strength in postmenopausal women treated with odanacatib: a randomized trial. J Clin Endocrinol Metab. 2013;98:571–80.

    Google Scholar 

  54. Nagase S et al. Serum and urine bone resorption markers and pharmacokinetics of the cathepsin K inhibitor ONO-5334 after ascending single doses in postmenopausal women. Br J Clin Pharmacol. 2012;74(6):959–70.

    Article  PubMed  CAS  Google Scholar 

  55. Hayashi K et al. BMP/Wnt antagonists are upregulated by dexamethasone in osteoblasts and reversed by alendronate and PTH: potential therapeutic targets for glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun. 2009;379(2):261–6.

    Article  PubMed  CAS  Google Scholar 

  56. Yao W et al. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum. 2008;58(6):1674–86.

    Article  PubMed  CAS  Google Scholar 

  57. Kanis JA et al. Case finding for the management of osteoporosis with FRAX - assessment and intervention thresholds for the UK. Osteoporos Int. 2009;19:1395–408 Erratum. Osteoporos Int. 2008;20:499–502.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

SR Venuturupalli declares that he has no conflicts of interest.

W. Sacks declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by either of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swamy R. Venuturupalli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venuturupalli, S.R., Sacks, W. Review of New Guidelines for the Management of Glucocorticoid Induced Osteoporosis. Curr Osteoporos Rep 11, 357–364 (2013). https://doi.org/10.1007/s11914-013-0170-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0170-3

Keywords

Navigation