Skip to main content

Advertisement

Log in

Inhibition of Cathepsin K for Treatment of Osteoporosis

  • Future Therapeutics (P Miller, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Cathepsin K is the protease that is primarily responsible for the degradation of bone matrix by osteoclasts. Inhibitors of cathepsin K are in development for treatment of osteoporosis. Currently available antiresorptive drugs interfere with osteoclast function. They inhibit both bone resorption and formation, due to the coupling between these processes. Cathepsin K inhibitors, conversely, target the resorption process itself and may not interfere with osteoclast stimulation of bone formation. In fact, when cathepsin K is absent or inhibited in mice, rabbits, or monkeys, bone formation is maintained or increased. In humans, inhibition of cathepsin K is associated with sustained reductions in bone resorption markers but with smaller and transient reductions in bone formation markers. The usefulness of cathepsin K inhibitors in osteoporosis is now being examined in phase 2 and phase 3 clinical trials of postmenopausal osteoporotic women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377:1276–87.

    Article  PubMed  CAS  Google Scholar 

  2. Sambrook P, Cooper C. Osteoporosis. Lancet. 2006;367:2010–8.

    Article  PubMed  CAS  Google Scholar 

  3. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7.

    Article  PubMed  Google Scholar 

  4. Fast Facts. nof.org/node/40. Accessed 7 June 2011.

  5. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    Article  PubMed  CAS  Google Scholar 

  6. Vaananen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys. 2008;473:132–8.

    Article  PubMed  Google Scholar 

  7. Lecaille F, Bromme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie. 2008;90:208–26.

    Article  PubMed  CAS  Google Scholar 

  8. Karsdal MA, Martin TJ, Bollerslev J, et al. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res. 2007;22:487–94.

    Article  PubMed  CAS  Google Scholar 

  9. Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA. Local communication on and within bone controls bone remodeling. Bone. 2009;44:1026–33.

    Article  PubMed  Google Scholar 

  10. Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473:201–9.

    Article  PubMed  CAS  Google Scholar 

  11. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473:139–46.

    Article  PubMed  CAS  Google Scholar 

  12. Fuller K, Lawrence KM, Ross JL, et al. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone. 2008;42:200–11.

    Article  PubMed  CAS  Google Scholar 

  13. Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–65.

    Article  PubMed  CAS  Google Scholar 

  14. Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133:38–52.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–21.

    Article  PubMed  CAS  Google Scholar 

  16. Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, et al. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet. 2009;124:561–77.

    Article  PubMed  CAS  Google Scholar 

  17. Drake FH, Dodds RA, James IE, et al. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem. 1996;271:12511–6.

    Article  PubMed  CAS  Google Scholar 

  18. Bromme D, Okamoto K, Wang BB, Biroc S. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem. 1996;271:2126–32.

    Article  PubMed  CAS  Google Scholar 

  19. Garnero P, Borel O, Byrjalsen I, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem. 1998;273:32347–52.

    Article  PubMed  CAS  Google Scholar 

  20. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273:1236–8.

    Article  PubMed  CAS  Google Scholar 

  21. Schilling AF, Mulhausen C, Lehmann W, et al. High bone mineral density in pycnodysostotic patients with a novel mutation in the propeptide of cathepsin K. Osteoporos Int. 2007;18:659–69.

    Article  PubMed  CAS  Google Scholar 

  22. Ho N, Punturieri A, Wilkin D, et al. Mutations of CTSK result in pycnodysostosis via a reduction in cathepsin K protein. J Bone Miner Res. 1999;14:1649–53.

    Article  PubMed  CAS  Google Scholar 

  23. Saftig P, Hunziker E, Wehmeyer O, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A. 1998;95:13453–8.

    Article  PubMed  CAS  Google Scholar 

  24. Gowen M, Lazner F, Dodds R, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999;14:1654–63.

    Article  PubMed  CAS  Google Scholar 

  25. Li CY, Jepsen KJ, Majeska RJ, et al. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J Bone Miner Res. 2006;21:865–75.

    Article  PubMed  CAS  Google Scholar 

  26. Pennypacker B, Shea M, Liu Q, et al. Bone density, strength, and formation in adult cathepsin K (-/-) mice. Bone. 2009;44:199–207.

    Article  PubMed  CAS  Google Scholar 

  27. Kiviranta R, Morko J, Uusitalo H, et al. Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J Bone Miner Res. 2001;16:1444–52.

    Article  PubMed  CAS  Google Scholar 

  28. Yasuda Y, Kaleta J, Bromme D. The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev. 2005;57:973–93.

    Article  PubMed  CAS  Google Scholar 

  29. Stoch SA, Wagner JA. Cathepsin K inhibitors: a novel target for osteoporosis therapy. Clin Pharmacol Ther. 2008;83:172–6.

    Article  PubMed  CAS  Google Scholar 

  30. Yamashita DS, Marquis RW, Xie R, et al. Structure activity relationships of 5-, 6-, and 7-methyl-substituted azepan-3-one cathepsin K inhibitors. J Med Chem. 2006;49:1597–612.

    Article  PubMed  CAS  Google Scholar 

  31. Gauthier JY, Chauret N, Cromlish W, et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett. 2008;18:923–8.

    Article  PubMed  CAS  Google Scholar 

  32. Adami S, Supronik J, Hala T, et al. Effect of 1 year treatment with the Cathepsin-K inhibitor, balicatib, on bone mineral density (BMD) in postmenopausal women with osteopenia/osteoporosis. J Bone Miner Res. 2006;21(Suppl S1):S24. Abstract 1085.

    Google Scholar 

  33. Peroni A, Zini A, Braga V, et al. Drug-induced morphea: report of a case induced by balicatib and review of the literature. J Am Acad Dermatol. 2008;59:125–9.

    Article  PubMed  Google Scholar 

  34. Runger TM, Adami S, Benhamou CL, et al. Morphea-like skin reactions in patients treated with the cathepsin K inhibitor balicatib. J Am Acad Dermatol. 2011. doi:10.1016/j.jaad2010.11.033

  35. Pennypacker BL, Duong lT, Cusick TE, et al. Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res. 2011;26:252–62.

    Article  PubMed  CAS  Google Scholar 

  36. Stroup GB, Kumar S, Jerome CP. Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys. Calcif Tissue Int. 2009;85:344–55.

    Article  PubMed  CAS  Google Scholar 

  37. • Masarachia PJ, Pennypacker B, Pickarski M, et al. Odanacatib reduces bone turnover and increases bone mass in lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2011, in press. Uses non-human primates to explore the mechanism of action of cathepsin K inhibitors for osteoporosis.

  38. Yamada H, Mori H, Kunishige A, et al. Efficacy of ONO-5334, a cathepsin K inhibitor, on bone turnover markers and bone mineral density in ovariectomized cynomolgus monkeys. Presented at European Calicified Tissue International, Glasgow, Scottland; 2010.

  39. Yamada H, Ochi Y, Kunishige A, et al. Efficacy of ONO-5334, a cathepsin K inhibitor, on bone mass and strength in ovariectomized cynomolgus monkeys. Bone. 2011;48:S221.

    Article  Google Scholar 

  40. Ochi Y, Yamada H, Kunishige ANS, et al. Efficacy of ONO-5334, a cathepsin K inhibitor, on bone turnover and cortical geometry in ovariectomized cynolmolgus monkeys. Bone. 2011;48:S72.

    Article  Google Scholar 

  41. Mayhew PM, Thomas CD, Clement JG, et al. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet. 2005;366:129–35.

    Article  PubMed  Google Scholar 

  42. • Jerome C, Missbach M, Gamse R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int. 2011.

  43. • Cusick T, Chen CM, Pennypacker BL, et al. Odanacatib treatment increases Hi bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in ovariectomized adult rhesus monkey. J Bone Miner Res. 2011, in press. Uses non-human primates to explore the mechanism of action of cathepsin K inhibitors for osteoporosis.

  44. •• Bone HG, McClung MR, Roux C, et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010;25:937–47. Reports clinical results of drugs in development that use the novel mechanism of action of inhibition of cathepsin K.

    PubMed  Google Scholar 

  45. •• Eisman JA, Bone HG, Hosking DJ, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26:242–51. Reports clinical results of drugs in development that use the novel mechanism of action of inhibition of cathepsin K.

    Article  PubMed  CAS  Google Scholar 

  46. Binkley N, Bone H, Gilcrist N, et al. Treatment with the cathepsin K inhibitor odanacatib in postmenopausal women with low BMD: 5 year results of a phase 2 trial. Presented at the American Society of Bone and Mineral Research, San Diego, CA; 2011.

  47. Bone H, Dempster D, Eisman J, et al. Phase 3 fracture trial of odanacatib for osteoporosis - study design. Presented at the Endocrine Society meeting, San Diego, CA; 2010.

  48. •• Eastell R, Nagase S, Ohyama M, et al. Safety and efficacy of the Cathepsin K inhibitor, ONO-5334, in postmenopausal osteoporosis - the OCEAN study. J Bone Miner Res. 2011;26:1303–12. Reports clinical results of drugs in development that use the novel mechanism of action of inhibition of cathepsin K.

    Article  PubMed  CAS  Google Scholar 

  49. Eastell R, Nagase S, Small M, et al. Effect of the cathepsin K inhibitor ONO-5334 on biochemical markers of bone turnover in the treatment of postmennopausal osteopenia or osteoporosis: 2-year results from the OCEAN atudy. J Bone Miner Res. 2011.

  50. Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999;282:1344–52.

    Article  PubMed  CAS  Google Scholar 

  51. Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296:2927–38.

    Article  PubMed  CAS  Google Scholar 

  52. Gallagher JC, Rapuri PB, Haynatzki G, Detter JR. Effect of discontinuation of estrogen, calcitriol, and the combination of both on bone density and bone markers. J Clin Endocrinol Metab. 2002;87:4914–23.

    Article  PubMed  CAS  Google Scholar 

  53. Miller PD, Bolognese MA, Lewiecki EM, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43:222–9.

    Article  PubMed  CAS  Google Scholar 

  54. Stakkestad JA, Lakatos P, Lorenc R, et al. Monthly oral ibandronate is effective and well tolerated after 3 years: the MOBILE long-term extension. Clin Rheumatol. 2008;27:955–60.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: S. Boonen: received editorial support from Dr. Rosenberg who is an employee of Merck; has received payment for lectures including service on speakers bureaus for Amgen, Novartis, and Servier; and has received travel/accommodations/meeting expenses from Amgen, Novartis, and Servier for Congress participation; E. Rosenberg: is employed by and has stock options in Merck Sharp & Dohme; F. Claessens: none; D. Vanderschueren: none; S. Papapoulos: has been a board member for Merck & Co Advisory Board, Amgen, Novartis; has been a consultant for Merck & Co, Alliance for Better Bone Health, Amgen, Roche, GlaxoSmithKline; and has received honoraria from all above-mentioned entities in relation to participation in AdB and Consultancies; and has received travel/accommodations expenses covered or reimbursed from all above-mentioned entities in relation to participation in AdB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Boonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonen, S., Rosenberg, E., Claessens, F. et al. Inhibition of Cathepsin K for Treatment of Osteoporosis. Curr Osteoporos Rep 10, 73–79 (2012). https://doi.org/10.1007/s11914-011-0085-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-011-0085-9

Keywords

Navigation