Skip to main content

Advertisement

Log in

Composite of nanocrystalline cellulose with tin dioxide as Lightweight Substrates for high-performance Lithium-ion battery

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nanocrystalline Cellulose (CNC) has smoother surfaces, better optical transparency and higher mechanical strength in comparison with various cellulose fibers. These properties combined with their low cost, light weight, and flexiblility indicate CNC’s great potential as an attractive candidate for preparation of carbon materials, which can be promising electrode for Lithium-ion batteries. However, CNC cannot be directly used in battery fabrication because of its electrically non-conductive property. Wherefore, using pyrolysis to convert CNC into conductive materials is extensively investigated. In our study, high temperature range is used to convert nanocrystalline cellulose into highly conductive carbon material and used in Lithium-ion batteries. The nanocellulose powder after pyrolysis from 800 °C and 1,600 °C is used as active material in Lithium-ion battery electrodes, and the results obtained show a good electrochemical performance with stable cycling capacity. Following, the carbon network obtained through the pyrolysis (800 °C and 1,600 °C) of nanocrystalline cellulose incorporation with tin dioxide (SnO2) was also used as electrode material in Lithium-ion batteries, resulting in stability, outstanding capacity and better performance in comparison with other carbon-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J. Y. Zhu, G. Henriksson, M. E. Himmel and L. Hu, Chem. Rev., 116, 9305 (2016).

    Article  CAS  Google Scholar 

  2. Z. Li, J. Liu, K. Jiang and T. Thundat, Nano Energy, 25, 161 (2016).

    Article  CAS  Google Scholar 

  3. X. Yang, K. Shi, I. Zhitomirsky and E. D. Cranston, Adv. Mater., 27, 6104 (2015).

    Article  CAS  Google Scholar 

  4. L. Wang, C. Schutz, G. Salazar-Alvarez and M. M. Titirici, RSC Adv., 4, 17549 (2014).

    Article  CAS  Google Scholar 

  5. X. Du, Z. Zhang, W. Liu and Y. Deng, Nano Energy, 35, 299 (2017).

    Article  CAS  Google Scholar 

  6. Z. Wang, R. Pan, R. Sun, K. Edstrom, M. Stromme and L. Nyholm, ACS Appl. Energy Mater., 1, 4341 (2018).

    Article  CAS  Google Scholar 

  7. M. L. Foresti, A. Vazquez and B. Boury, Carbohydr. Polym., 157, 447 (2017).

    Article  CAS  Google Scholar 

  8. M. C. Hsieh, C. Kim, M. Nogi and K. Suganuma, Nanoscale, 5, 9289 (2013).

    Article  CAS  Google Scholar 

  9. J. Lee and J. H. Moon, Korean J. Chem Eng., 34, 3195 (2017).

    Article  CAS  Google Scholar 

  10. T. L. Nguyen, T. T. Salunkhe, T. N. Vo, H. W. Choi, Y. Lee, J. Choi, J. Hur and I. T. Kim, J. Power Sources, 414, 470. (2019).

    Article  CAS  Google Scholar 

  11. T. N. Vo, H. Kim, J. Hur, W. Choi and I. T. Kim, J. Mater. Chem. A., 6, 22645 (2018).

    Article  CAS  Google Scholar 

  12. Y. Chen, J. Ma, Q. Li and T. Wang, Nanoscale, 5(8), 3262 (2013).

    Article  CAS  Google Scholar 

  13. S. J. R. Prabakar, Y.-H. Hwang, E.-G. Bae, S. Shim, D. Kim, M. S. Lah, K.-S. Sohn and M. Pyo, Adv. Mater., 25(24), 3307 (2013).

    Article  CAS  Google Scholar 

  14. J. Deng, Y. Chen, J. Ma, E. Zhang and T. Wang, J. Nanosci. Nanotechnol., 13(6), 4297 (2013).

    Article  CAS  Google Scholar 

  15. Q. Zhao, L. Ma, Q. Zhang, C. Wang and X. Xu, J. Nanomater., 2015, 6 (2015).

    Google Scholar 

  16. X. M. Yin, C. C. Li, M. Zhang, Q. Y. Hao, S. Liu, L.B. Chen and T. H. Wang, J. Phys. Chem. C, 114(17), 8084 (2010).

    Article  CAS  Google Scholar 

  17. L. B. Chen, X. M. Yin, L. Mei, C. C. Li, D. N. Lei, M. Zhang, Q. H. Li, Z. Xu, C. M. Xu and T. H. Wang, Nanotechnology, 23(3), 035402 (2011).

    Article  Google Scholar 

  18. L. Fan, X. Li, B. Yan, J. Feng, D. Xiong, D. Li, L. Gu, Y. Wen, S. Lawes and X. Sun, Adv. Energy Mater., 6(10), 1502057 (2016).

    Article  Google Scholar 

  19. J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun and J. Ma, Nano- Micro Lett., 10, 21 (2018).

    Article  Google Scholar 

  20. M. Dirican, Y. Lu, Y. Ge, O. Yildiz and X. Zhang, ACS Appl. Mater. Interfaces, 7(33), 18387 (2015).

    Article  CAS  Google Scholar 

  21. B. Huang, X. Li, Y. Pei, S. Li, X. Cao, R. C. Massé and G. Cao, Small, 12(14), 1945 (2016).

    Article  CAS  Google Scholar 

  22. S. Kuga, D. Y. Kim, Y. Nishiyama and R. M. Brown, Mol. Cryst. Lip. Cryst., 387, 13 (2002).

    Article  CAS  Google Scholar 

  23. Z. Lin, X. Xiong, J. Zheng, G. Wang and C. Yang, Mater. Lett., 202, 123 (2017).

    Article  CAS  Google Scholar 

  24. Y. Luo, X. Zhou, Y. Zhong, M. Yang, J. Wei and Z. Zhou, Electrochim. Acta, 154, 136 (2015).

    Article  CAS  Google Scholar 

  25. C. Zhu, X. Xia, J. Liu, Z. Fan, D. Chao, H. Zhang and H. J. Fan, Nano Energy, 4, 105 (2014).

    Article  CAS  Google Scholar 

  26. B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y. B. He and Z. Lin, Angew. Chem. Int. Ed., 56(7), 1869 (2017).

    Article  CAS  Google Scholar 

  27. M. Zhang, Z. Sun, T. Zhang, D. Sui, Y. Ma and Y. Chen, Carbon, 102, 32 (2016).

    Article  CAS  Google Scholar 

  28. R. Li, B. Wang, S. Ji and P. Jin, RSC Adv., 6(59), 54179 (2016).

    Article  CAS  Google Scholar 

  29. R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang and M. Zhu, Adv. Mater., 29(13), 1605006 (2017).

    Article  Google Scholar 

  30. S. I. Oh, J. C. Kim and D. W. Kim, Cellulose, 26, 2557 (2019).

    Article  CAS  Google Scholar 

  31. Z. Chen, Z. Xu, W. Li, C. Chen, J. Yang, J. Liu, F. Gong, J. Liao and M. Wu, ACS Appl. Energy Mater., 2, 5171 (2019).

    Article  CAS  Google Scholar 

  32. M. Wang, S. Li, Y. Zhang and J. Huang, Chem. Eur. J., 21, 16195 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Korea Electric Power Corporation (Grant number: R18XA02) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194030202290). We very much appreciate all measurement instruments, supported by Smart Materials Research Center for IoT in Gachon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Joon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, Q.N., Kim, I.T., Hur, J. et al. Composite of nanocrystalline cellulose with tin dioxide as Lightweight Substrates for high-performance Lithium-ion battery. Korean J. Chem. Eng. 37, 898–904 (2020). https://doi.org/10.1007/s11814-020-0506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0506-5

Keywords

Navigation