Skip to main content

Advertisement

Log in

MWCNT/Cellulose Collector as Scaffold of Nano-Silicon for Li-Si Battery

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon-based anodic materials have the highest lithium storage capacity of 4200mAh/g and lower voltage platform. It was considered to be one of the most potential anode materials for lithium-ion batteries. However, the main obstacle of silicon as anode is the huge volume change of a 400% during the charge-discharge process which resulted in the pulverization of silicon and big irreversible capacity. The silicon-carbon composite anode can accommodate the voluume expandition and improve cycle performance. In this work, nano-silicon and multiwalled carbon nanotubes(MWCNTs) composite anodes were prepared. Highly conductive carbon nanotubes paper(MCC) with porous structure and interconnected channel was used as host of nano-silicon to replace the copper foil current collector. The morphology and electrochemical performance of the composite anodes was analyzed by scanning electron microscopy (SEM), transmission electron microscopy(TEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy(EIS) tests. The results demonstrated the reversible capacity of Si/MCC composites anode maintained at 900 mAh/g after 200 cycles at 200 mA/g and kept a high coulomb efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jieyi Y, Sun G, Xinglong D (2017) Electrochemical performance of Si nanoribbons as anode material for Li-ion battery synthesized by Arc-discharge plasma. Chin J Mater Res 31(3):161–167

    Google Scholar 

  2. de las Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85

    Article  CAS  Google Scholar 

  3. Lv Q, Liu Y, Ma T et al (2015) Hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries. ACS Appl Mater Interfaces 7:23501–23506

    Article  CAS  PubMed  Google Scholar 

  4. Liang B, Liu Y, Xu Y (2014) Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources 267:469–490

    Article  CAS  Google Scholar 

  5. Huggings RA, Cui YI (2011) High-performance lithium battery anodes using silicon nanowires. Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group, pp 187

  6. Zhang Y, Zhang XG, Zhang HL et al (2006) Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochimica acta 51(23):4994–5000

    Article  CAS  Google Scholar 

  7. Cao X, Chuan X, Li S et al (2016) Hollow silica spheres embedded in a porous carbon matrix and its superior performance as the anode for lithium-ion batteries. Part Part Syst Charact 33(2):110–117

    Article  CAS  Google Scholar 

  8. Yang Y, Wang Z, Zhou Y et al (2017) Synthesis of porous Si/graphite/carbon nanotubes@C composites as a practical high-capacity anode for lithium-ion batteries. Mater Lett 199:84–87

    Article  CAS  Google Scholar 

  9. Lee SW, Gallant BM, Lee Y et al (2012) Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energ Environ Sci 5(1):5437–5444

    Article  CAS  Google Scholar 

  10. Zheng D, Wu C, Li J et al (2013) Chemically shortened multi-walled carbon nanotubes used as anode materials for lithium-ion batteries. Physica E: Low-dimensional Syst Nanostruct 53:155–160

    Article  CAS  Google Scholar 

  11. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  12. Marom R, Amalraj SF, Leifer N et al (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21(27):9938–9954

    Article  CAS  Google Scholar 

  13. Ma T, Yu X, Li H et al (2017) High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries. Nano Lett 17(6):3959

    Article  CAS  PubMed  Google Scholar 

  14. An W, Fu J, Mei S et al (2017) Dual carbon layers hybridized mesoporous tin hollow spheres for fast-rechargeable and high-stable lithium-ion battery anode. J Mater Chem A 5(27):14422–14429

    Article  CAS  Google Scholar 

  15. Khomenko VG, Barsukov VZ (2007) Characterization of silicon-and carbon-based composite anodes for lithium-ion batteries. Electrochimica acta 52(8):2829–2840

    Article  CAS  Google Scholar 

  16. Jeong MG, Du HL, Islam M et al (2017) Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett 17(9):5600–5606

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Z, Xu Y, Liu W et al (2010) High capacity si/DC/MWCNTs nanocomposite anode materials for lithium ion batteries. J Alloys Compd 493(1):636–639

    Article  CAS  Google Scholar 

  18. Luo Z, Fan D, Liu X et al (2009) High performance silicon carbon composite anode materials for lithium ion batteries. J Power Sources 189(1):16–21

    Article  CAS  Google Scholar 

  19. Zuo P, Yin G, Yang Z et al (2009) Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries. Mater Chem Phys 115(2):757–760

    Article  CAS  Google Scholar 

  20. Luo F, Chu G, Xia X et al (2015) Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. Nanoscale 7(17):7651

    Article  CAS  PubMed  Google Scholar 

  21. Dimov N, Xia Y, Yoshio M (2007) Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features. J Power Sources 171(2):886–893

    Article  CAS  Google Scholar 

  22. Gao H, Hou F, Zheng X et al (2015) Electrochemical property studies of carbon nanotube films fabricated by CVD method as anode materials for lithium-ion battery applications. Vacuum 112:1–4

    Article  CAS  Google Scholar 

  23. Wang B, Li X, Luo B et al (2015) Approaching the downsizing limit of silicon for surface-controlled lithium storage. Adv Mater 27(9):526–1532

    CAS  Google Scholar 

  24. Yao Y, Mcdowell MT, Ryu I et al (2949) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11(7):2011

    Google Scholar 

  25. Deshpande R, Cheng YT, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195(15):5081–5088

    Article  CAS  Google Scholar 

  26. Pushparaj VL, Shaijumon MM, Kumar A et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577

    Article  CAS  PubMed  Google Scholar 

  27. Gohier A, Laïk B, Kim KH et al (2012) High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv Mater 24(19):2592–2597

    Article  CAS  PubMed  Google Scholar 

  28. Lee JH, Kim WJ, Kim JY et al (2008) Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J Power Sources 176(1):353–358

    Article  CAS  Google Scholar 

  29. Yang X, Wen Z, Zhang L et al (2008) Synthesis and electrochemical properties of novel silicon-based composite anode for lithium-ion batteries. J Alloys Compd 464(1):265–269

    Article  CAS  Google Scholar 

  30. Yoon S, Lee S, Kim S et al (2015) Carbon nanotube film anodes for flexible lithium ion batteries. J Power Sources 279:495– 501

    Article  CAS  Google Scholar 

  31. Song B, Fang H, Yang J et al (2011) Intercalation and diffusion of lithium ions in a carbon nanotube bundle by ab initio molecular dynamics simulations. Energy Environ Sci 4(4):1379– 1384

    Article  CAS  Google Scholar 

  32. Chen S, Shen L, Peter A et al (2017) Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 1605650

  33. Zhang T, Gao J, Zhang HP et al (2007) Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Commun 9(5):886–890

    Article  CAS  Google Scholar 

  34. Tang W, Hou YY, Wang XJ et al (2012) A hybrid of MnO 2, nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors. J Power Sources 197(197):330–333

    Article  CAS  Google Scholar 

  35. Wang Y, Chen B, Zhang Y et al (2016) ZIF-8@MWCNT-Derived carbon composite as electrode of high performance for supercapacitor. Electrochim Acta 213:260–269

    Article  CAS  Google Scholar 

  36. Wang J, Hou X, Zhang M et al (2017) 3-Aminopropyltriethoxysilane-assisted si@sio2/CNTs hybrid microspheres as superior anode materials for Li-ion batteries. Silicon 9(1):97–104

    Article  CAS  Google Scholar 

  37. Zhang T, Gao J, Zhang HP et al (2007) Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Commun 9(5):886–890

    Article  CAS  Google Scholar 

  38. Ni J-F, Zhou H-H, Chen J-T et al (2005) Study of current collectors for Li-ion batteries. Battery Bimonthly 41(17):2683–2689

    Google Scholar 

  39. Ye H, Xin S, Yin YX et al (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7(23):1700530

    Article  CAS  Google Scholar 

  40. Luo F, Chu G, Xia X et al (2015) Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. Nanoscale 7(17):7651

    Article  CAS  PubMed  Google Scholar 

  41. Salajkove M, Valentini L, Zhou Q et al (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by and Jiangxi education fund (KJLD13006). Jiangxi scientific fund (20142BBE50071)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Ethics declarations

Conflict of interests

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, X., Wang, J. et al. MWCNT/Cellulose Collector as Scaffold of Nano-Silicon for Li-Si Battery. Silicon 11, 1955–1962 (2019). https://doi.org/10.1007/s12633-018-0013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-0013-z

Keywords

Navigation