Skip to main content
Log in

A regeneration system using cotyledons and cotyledonary node explants of Toona ciliata

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

We used the cotyledons and cotyledonary nodes of Toona ciliata (Chinese mahogany) as explants to examine callus and adventitious shoot induction when exposed to different ratios of hormones. We also investigated the effects of seedling age, inoculation method, and genotype on the efficient regeneration of T. ciliata. The results showed that different genotypes exhibited significantly different callus induction efficiency. The cotyledons and cotyledonary nodes of 20-day seedlings inoculated onto MS medium with 0.5 mg/L 6-benzylaminopurine (6-BA), 0.5 mg/L kinetin (KT) and 0.05 mg/L 1-naphthylacetic acid (NAA) achieved a greater regeneration rate than did other concentrations of cytokinin and auxin. The numbers of shoots per cotyledon and cotyledonary node explant were 7.33 and 6.67. The optimal inoculation method for cotyledons was that the distal end of the explants was placed in contact with the medium. The optimal adventitious shoot differentiation medium for cotyledon explants was MS medium containing 0.3 mg/L 6-BA and 0.2 mg/L NAA, producing a 3.4 cm height of shoot on average. This study established an efficient regeneration system for T. ciliata with cotyledons and cotyledonary nodes as explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anandan R, Deenathayalan T, Bhuvaneshwari R, Monisha MM, Prakash M (2019) An efficient protocol for rapid plant regeneration from deembryonated cotyledons of black gram [Vigna mungo (L.) Hepper]. Indian J Agric Res 53:589–593

    Google Scholar 

  • Anuradha TS, Jami SK, Datla RS, Kirti PB (2006) Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus:nptII fusion gene based vecto. J Biosci 32:235–246

    Article  Google Scholar 

  • Anwar F, Sharmila P, Pardha S (2008) An optimal protocol for in vitro regeneration, efficient rooting and stable transplantation of chickpea. Physiol Mol Biol Plants 14:329–335

    Article  CAS  Google Scholar 

  • Armas I, Pogrebnyak N, Raskin I (2017) A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.). Plant Methods 13:58

    Article  Google Scholar 

  • Ayala PG, Brugnoli EA, Luna CV, Gonzalez AM, Pezzutti R, Sansberro PA (2019) Eucalyptus nitens plant regeneration from seedling explants through direct adventitious shoot bud formation. Trees Struct Funct 33:1667–1678

    Article  CAS  Google Scholar 

  • Behera S, Kar SK, Rout KK, Barik DP, Panda PC, Naik SK (2019) Assessment of genetic and biochemical fidelity of field-established Hedychium coronarium J. Koenig regenerated from axenic cotyledonary node on meta-topolin supplemented medium. Ind Crop Prod 134:206–215

    Article  CAS  Google Scholar 

  • Compton ME, Gray DJ, Elmstrom GW (1996) Identification of tetraploid regenerants from cotyledons of diploid watermelon cultured in vitro. Euphytica 87:165–172

    Article  Google Scholar 

  • Cui YY, Deng YW, Zheng KY, Hu XM, Zhu ML, Deng XM, Xi RC (2019) An efficient micropropagation protocol for an endangered ornamental tree species (Magnolia sirindhorniae Noot. & Chalermglin) and assessment of genetic uniformity through DNA markers. Sci Rep 9:9634

    Article  Google Scholar 

  • Du L, Li YP, Yao Y, Hang LW (2015) An efficient protocol for plantlet regeneration via direct organogenesis by using nodal segments from embryo-cultured seedlings of Cinnamomum camphora L. PLoS ONE 10:e0127215

    Article  Google Scholar 

  • Gairi A, Rashid A (2005) Direct differentiation of somatic embryos on cotyledons of Azadirachta indica. Biol Plant 49:169–173

    Article  Google Scholar 

  • Gambhir G, Kumar P, Srivastava DK (2017) High frequency regeneration of plants from cotyledon and hypocotyl cultures in Brassica oleracea cv. Pride of India. Biotechnol Rep 15:107–113

    Article  Google Scholar 

  • Heinrich I, Banks JCG (2005) Dendroclimatological potential of the Australian red cedar. Aust J Bot 53:21–32

    Article  Google Scholar 

  • Ito S, Shinohara C, Hirata R, Mitsuda Y, Shimizu O, Nomiya H (2019) Factors limiting the distribution of deciduous broadleaved trees in warm-temperate mountainous riparian forests. Landsc Ecol Eng 15:391–400

    Article  Google Scholar 

  • Jiang XM (2013) Development of the concept, policy, technical problems of valuable broad-leaved tree species in Jiangxi province and countermeasures. For Technol Jiangxi 1:3–8 (in Chinese)

    Google Scholar 

  • Li JJ, Zhang D, Que QM, Chen XY, Ou Yang KX (2019) Plant regeneration and Agrobacterium-mediated transformation of the miracle tree Neolamarckia cadamba. Ind Crop Prod 130:443–449

    Article  CAS  Google Scholar 

  • Li P, Shang YY, Zhou W, Hu XS, Mao WM, Li JJ, Li JC, Chen XY (2018) Development of an efficient regeneration system for the precious and fast-growing timber tree Toona ciliata. Plant Biotechnol 35:51–58

    Article  CAS  Google Scholar 

  • Li P, Zhan X, Que QM, Qu WT, Liu MQ, Ou Yang KX, Li JC, Deng XM, Zhang JJ, Liao BY, Pian RQ, Chen XY (2015) Genetic diversity and population structure of Toona ciliata Roem. based on sequence-related amplified polymorphism (SRAP) markers. Forests 6:1094–1106

    Article  Google Scholar 

  • Lin SY, Liu GH, Guo TT, Zhang L, Wang SG, Ding YL (2019) Shoot proliferation and callus regeneration from nodular buds of Drepanostachyum luodianense. J For Res 30:1997–2005

    Article  CAS  Google Scholar 

  • Liu Q, Arnold RJ, Yang SZ, Wu JY, Li ZH, Li Y, Cheng Y (2019) Foliar application of exogenous polyamines to ameliorate drought-induced oxidative damage and physiological inhibition in Toona ciliata seedlings. Aust For 82:139–150

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena P (1995) Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276

    Article  CAS  Google Scholar 

  • Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213

    Article  CAS  Google Scholar 

  • Rathinapriya P, Satish L, Rameshkumar R, Pandian S, Rency AS, Ramesh M (2019) Role of activated charcoal and amino acids in developing an efficient regeneration system for foxtail millet (Setaria italica (L.) Beauv.) using leaf base segments. Physiol Mol Biol Plants 25:533–548

    Article  CAS  Google Scholar 

  • Raza G, Singh MB, Bhalla PL (2017) In vitro plant regeneration from commercial cultivars of soybean. Bio Med Res Int 2017:7379693

    Google Scholar 

  • Sebastiani MS, Ficcadenti N (2016) In vitro plant regeneration from cotyledonary explants of Cucumis melo L. var. cantalupensis and genetic stability evaluation using RAPD analysis. Plant Cell Tiss Organ Cult 124:69–79

    Article  CAS  Google Scholar 

  • Sivanandhan G, Choi SB, Jiae M, Choi SR, Kim SG, Park YD, Lim YP (2019) High frequency in vitro regeneration of Chinese cabbage (cv. Kenshin) from hypocotyl and cotyledon explants. Hortic Sci Technol 37:640–650

    Google Scholar 

  • Stavridou E, Tzioutziou NA, Madesis P, Labrou NE, Nianiou-Obeidat I (2019) Effect of different factors on regeneration and transformation efficiency of tomato (Lycopersicum esculentum) hybrids. Czech J Genet Plant 55:120–127

    Article  CAS  Google Scholar 

  • Sujatha K, Panda BM, Hazra S (2008) De novo organogenesis and plant regeneration in Pongamia pinnata, oil producing tree legume. Trees Struct Funct 22:711–716

    Article  Google Scholar 

  • Tambarussi EV, Rogalski M, Galeano E, Brondani GE, de Martin VD, da Silva LA, Carrer H (2017) Efficient and new method for Tectona grandis in vitro regeneration. Crop Breed Appl Biotechnol 17:124–132

    Article  CAS  Google Scholar 

  • Xhulaj D, Doriana B (2019) Effect of plant growth regulators on in vitro plant regeneration of wheat (Triticum aestivum L.) from embryo explants. J Anim Plant Sci 19:1616–1621

    Google Scholar 

  • Zhang L, Pan YZ, Liu SL, Chen Y, Shen LJ (2019) Embryonic callus induction and plant regeneration of Lilium leucanthum. Bull Bot Res 39(338–346):357 (in Chinese)

    Google Scholar 

  • Zhang SN, Ma T, Chen XY, Wen XJ (2016) Bionomics and control of Hypsipyla robusta. For Pest Dis 35:29–33 (in Chinese)

    Google Scholar 

  • Zimik M, Arumugam N (2017) Induction of shoot regeneration in cotyledon explants of the oilseed crop Sesamum indicum L. J Gene Eng Biotechnol 15:303–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Li or Xiaoyang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was financially supported by the National Key Research Projects, Forestry Resource Cultivation and Utilization Technology Innovation (Grant No. 2016YFD0600606), the Natural Science Foundation of Guangdong Province of China (Grant No. 2018A030313798) and Characteristic innovation projects of department of education of Guangdong province (Grant No. 2019KTSCX017).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yanbo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Mao, W., Shang, Y. et al. A regeneration system using cotyledons and cotyledonary node explants of Toona ciliata. J. For. Res. 32, 967–974 (2021). https://doi.org/10.1007/s11676-020-01189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01189-5

Keywords

Navigation