Skip to main content
Log in

A New Theoretical Study of the Cr-Nb System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

A new thermodynamic assessment of the binary Cr-Nb system was performed using the CALPHAD method based on a review of the available literature and ab initio calculations for the hypothetical end members of the C15 Laves phase. Recent experiments reported in the literature revealed that there is no C14 type high temperature phase in this system, which is in contrast to most of the literature. A thorough analysis of these reports, however, showed that the C14 phase has never been directly observed and that its presence had been derived from ternary phase diagram data, twinning of the C15 low temperature phase and erroneous interpretations of x-ray diffractograms. Due to the lack of clear evidence in favor of its existence, the C14 phase was not considered a thermodynamically stable compound in the present evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Quadakkers, L. Niewolak, and P. Ennis, PCT/DE2007/000166, WO2007093148-A1, DE102006007598-A1, Germany, 2006

  2. J. Froitzheim, G.H. Meier, L. Niewolak, P. Ennis, H. Hattendorf, L. Singheiser, and W.J. Quadakkers, Development of High Strength Ferritic Steel for Interconnect Application in SOFCs, J. Power Sources, 2008, 178, p 163-173

    Article  Google Scholar 

  3. M. Venkatraman and J.P. Neumann, The Cr-Nb (Chromium-Niobium) System, Bull. Alloy Phase Diagr., 1986, 7(5), p 462-466

    Article  Google Scholar 

  4. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., Materials-Park, OH, ASM International, 1990, p 1298-1299

    Google Scholar 

  5. J.G. Costa Neto, S.G. Fries, H.L.Lukas, S. Gama, and G. Effenberg, Thermodynamic Optimisation of the Nb-Cr System, CALPHAD, 1993, 17, p 219-228

  6. J.G. Costa Neto, Master Thesis, 1991, Faculdade de Engenharia Mecinica, Universidade de Campinas, Brazil

  7. D.J. Thoma and J.H. Perepezko, An experimental Evaluation of the Phase Relationships and Solubilities in the Nb-Cr System, Mater. Sci. Eng., 1992, 156A, p 97-108

    Article  Google Scholar 

  8. J. Pavlu, J. Vrest’al, and P. Sob, Re-modeling of Laves Phases in the Cr-Nb and Cr-Ta Systems Using First-Principles Results, CALPHAD, 2009, 33, p 179-186

    Article  Google Scholar 

  9. H.J. Goldschmidt and J.A. Brand, The Constitution of the Chromium-Niobium-Silicon System, J. Less Common Met., 1961, 3, p 44-61

    Article  Google Scholar 

  10. H.J. Goldschmidt and J.A. Brand, The Constitution of the Chromium-Niobium-Molybdenum System, J. Less Common Met., 1961, 3, p 34-43

    Article  Google Scholar 

  11. M.I. Zakharova and D.A. Proskoshin, An Investigation of the Niobium-Molybdenum-Chromium System, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl., 1961, 4, p 59-67, in Russian

  12. M. Takeyama and C.T. Liu, Microstructure and Mechanical Properties of Laves-Phase Alloys Based on Cr2Nb, Mater. Sci. Eng., 1991, 132A, p 61-66

    Article  Google Scholar 

  13. V.M. Pan, Polymorphic Transformation in NbCr2, Fiz. Met. Metalloved., 1961, 12(3), p 455-457

    Google Scholar 

  14. V.M. Pan, Definition of Equilibrium Diagrams for Cr-Nb and NbCr2-Ni3Nb Systems, Dopov. Akad. Nauk Ukr. RSR, 1961, 4, p 332-334

    Google Scholar 

  15. K.S. Kumar and P.M. Hazzledine, Polytypic Transformations in Laves Phases, Intermetallics, 2004, 12, p 763-770

    Article  Google Scholar 

  16. J. Aufrecht, A. Leineweber, and E.J. Mittemeijer, Metastable Hexagonal Modifications of the NbCr 2 Laves Phase as Function of Cooling Rate, MRS Fall Meeting, Boston, MA, 2008

    Google Scholar 

  17. J. Aufrecht, A. Leineweber, A. Senyshyn, and E.J. Mittemeijer, The Absence of a Stable Hexagonal Laves Phase Modification (NbCr2) in the Nb-Cr System, Scr. Mater., 2010, 62(5), p 227-230

    Article  Google Scholar 

  18. X.-W. Nie, Comments on “The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb-Cr system”, Scr. Mater., 2011, 64, p 990-993

    Article  Google Scholar 

  19. J.H. Zhu, C.T. Liu, and P.K. Liaw, Phase Stability and Mechanical Behavior of NbCr2-Based Laves Phases, Intermetallics, 1999, 7, p 1011-1016

    Article  Google Scholar 

  20. F. Stein, M. Palm, and G. Sauthoff, Structure and Stability of Laves Phases. Part I. Critical Assessment of Factors Controlling Laves Phase Stability, Intermetallics, 2004, 12, p 713-720

    Article  Google Scholar 

  21. F. Stein, M. Palm, and G. Sauthoff, Structure and Stability of Laves Phases Part II—Structure Type Variations in Binary and Ternary Systems, Intermetallics, 2005, 13, p 1056-1074

    Article  Google Scholar 

  22. J.H. Zhu, P.K. Liaw, and C.T. Liu, Effect of Electron Concentration on the Phase Stability of NbCr2-Based Laves Phase Alloys, Mater. Sci. Eng., 1997, A239-240, p 260-264

    Article  Google Scholar 

  23. X.W. Nie, S.Q. Lu, and K.L. Wang, Phase Transformation of NbCr2 Intermetallics Produced by Mechanical Alloying Followed by Hot-Pressing Consolidation, Mater. Charact., 2008, 59, p 816-819

    Article  Google Scholar 

  24. K. Korniyenko, Chromium-Iron-Niobium, Landolt Börnstein New Series, 2008, IV/11D3

  25. K.S. Kumar and C.T. Liu, Precipitation in a Cr-Cr2Nb Alloy, Acta Mater., 1997, 45(9), p 3671-3686

    Article  Google Scholar 

  26. K.S. Kumar, L. Pang, J.A. Horton, and C.T. Liu, Structure and Composition of Laves Phases in Binary Cr-Nb, Cr-Zr and Ternary Cr-(Nb, Zr) Alloys, Intermetallics, 2003, 11, p 677-685

    Article  Google Scholar 

  27. T. Takasugi, K.S. Kumar, C.T. Liu, and E.H. Lee, Microstructure and Mechanical Properties of Two-Phase Cr-Cr2Nb, Cr-Cr2Zr and Cr-Cr2(Nb, Zr) Alloys, Mater. Sci. Eng., 1999, 260A, p 108-123

    Article  Google Scholar 

  28. B.P. Bewlay, J.A. Sutliff, M.R. Jackson, and H.A. Lipsitt, Microstructural and Crystallographic Relationships in Directionally Solidified Nb-Cr2Nb and Cr-Cr2Nb eutectics, Acta Metall. Mater., 1994, 42(8), p 2869-2878

    Article  Google Scholar 

  29. L.N. Guseva, Phase Transformations in Chromium-Tantalum and Chromium-Niobium Alloys, Izv. Akad. Nauk. SSSR Neorg. Mater., 1965, 1(10), p 1743-1747

    Google Scholar 

  30. A. Leineweber, J. Aufrecht, A. Senyshyn, and E.J. Mittemeijer, Reply to Comments on the Absence of a Stable Hexagonal Laves Phase Modification (NbCr2) in the Nb-Cr System, Scr. Mater., 2011, 64, p 994-997

    Article  Google Scholar 

  31. V.P. Elyutin and V.F. Funke, Some Data for the Chromium-Niobium Phase Diagram, Izvest. Acad. Nauk SSSR Otd. Tekh. Nauk, 1956, 3, p 68-76

  32. I.I. Kornilov, K.I. Shakhova, P.B. Budberg, and N.A. Nedumov, Phase Diagrams in the System TiCr2-NbCr2, Dokl. Akad. Nauk SSSR, 1963, 149(6), p 1340-1342

    Google Scholar 

  33. J. Aufrecht, A. Leineweber, V. Duppel, and E.J. Mittemeijer, Transformation-Dislocation Dipoles in Laves Phases: A High-Resolution Transmission Electron Microscopy Analysis, J. Mater. Res., 2010, 25(10), p 1983-1991

    Article  ADS  Google Scholar 

  34. J. Aufrecht, W. Baumann, A. Leineweber, V. Duppel, and E.J. Mittemeijer, Layer-Stacking Irregularities in C36-Type Nb-Cr and Ti-Cr Laves Phases and Their Relation with Polytypic Phase Transformations, Philos. Mag., 2010, 90(23), p 3149-3175

    Article  ADS  Google Scholar 

  35. V.N. Eremenko, G.V. Zudilova, and L.A. Gaevskaya, About the Phase Diagram of the Chromium-Niobium System, Metalloved. I, Obrabotka Met., 1958, 1, p 11-16

    Google Scholar 

  36. E. Rudy, Compendium of Phase Diagram Data, Part V, Technical Report AFML-TR-65-2, 1969, 21, p 127-130

  37. J.F. Martin, F. Müller, and O. Kubaschewski, Thermodynamic Properties of TaCr2 and NbCr2, Trans. Faraday Soc., 1970, 66, p 1065-1072

    Article  Google Scholar 

  38. S. Hong and C.L. Fu, Phase Stability and Elastic Moduli of Cr2Nb by First-Principles Calculations, Intermetallics, 1999, 7, p 5-9

    Article  Google Scholar 

  39. Q. Yao, J. Sun, Y. Zhang, and B. Jiang, First-Principles Studies of Ternary Site Occupancy in the C15 NbCr2 Laves Phase, Acta Mater., 2006, 54(13), p 3585-3591

    Article  Google Scholar 

  40. A. Ormeci, F. Chu, J. Wills, T. Mitchell, R. Albers, D. Thoma, and S. Chen, Total-Energy Study of Electronic Structure and Mechanical Behavior of C15 Laves Phase Compounds: NbCr2 and HfV2, Phys. Rev. B, 1996, 54(18), p 12753-12762

    Article  ADS  Google Scholar 

  41. A. Kellou, T. Grosdidier, C. Coddet, and H. Aourag, Theoretical Study of Structural, Electronic, and Thermal Properties of Cr(Zr, Nb) Laves Alloys, Acta Mater., 2005, 53(5), p 1459-1466

    Article  Google Scholar 

  42. P.E.N. De Souza, L.M. De Oliveira, W.A. Ortiz, P.C. De Camargo, and A.J.A. De Oliveira, Local Magnetic Moments in Dilute Cr-Nb Alloys: the Effects of Applied Magnetic Field and Nb Concentration, J. Phys. Condens. Matter, 2005, 17, p 2191-2196

    Article  ADS  Google Scholar 

  43. G. te Velde and E.J. Baerends, Precise Density-Functional Method for Periodic Structures, Phys. Rev. B, 1991, 44(15), p 7888-7903

    Article  ADS  Google Scholar 

  44. G. Wiesenekker and E.J. Baerends, Quadratic Integration Over the Three-Dimensional Brillouin Zone, J. Phys., 1991, 3, p 6721-6742

    Google Scholar 

  45. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868

    Article  ADS  Google Scholar 

  46. E. van Lenthe, A.E. Ehlers, and E.J. Baerends, Geometry Optimization in the Zero Order Regular Approximation for Relativistic Effects, J. Chem. Phys., 1999, 110, p 8943-8953

    Article  ADS  Google Scholar 

  47. K. Hari Kumar and P. Wollants, Wollants, Some Guidelines for Thermodynamic Optimisation of Phase Diagrams, J. Alloys Compd., 2001, 320, p 189-198

    Article  Google Scholar 

  48. R. Schmid-Fetzer, D. Andersson, P. Chevalier, L. Eleno, O. Fabrichnaya, U. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr, and M. Zinkevich, Assessment Techniques, Database Design and Software Facilities for Thermodynamics and Diffusion, CALPHAD, 2007, 31(1), p 38-52

    Article  Google Scholar 

  49. N. Saunders and A.P. Miodownik, CALPHAD (A Comprehensive Guide), Elsevier, London, 1998

    Google Scholar 

  50. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics, Cambridge University Press, Cambridge, UK, 2007

    Book  MATH  Google Scholar 

  51. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26(2), p 273-312

    Article  Google Scholar 

  52. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425

    Article  Google Scholar 

  53. J.H. Zhu, L.M. Pike, C.T. Liu, and P.K. Liaw, Point Defects in Binary NbCr2 Laves-Phase Alloy, Scr. Mater., 1998, 39(7), p 833-838

    Article  Google Scholar 

  54. Y.J. Bhatt, L. Kumar, R.V. Patil, G.B. Kale, and S.P. Garg, Diffusion Studies in Hf-Mo, Zr-Mo, Cr-Nb, Cr-Ta and Th-Re Systems Above 1900 K, J. Alloy. Compd., 2000, 302, p 177-186

    Article  Google Scholar 

  55. M.H.F. Sluiter, Ab Initio Lattice Stabilities of Some Elemental Complex Structures, CALPHAD, 2006, 30, p 357-366

    Article  Google Scholar 

  56. R.G. Ross and W. Hume-Rothery, High Temperature x-ray Metallography: I. A New Debye-Scherrer Camera for Use at Very High Temperatures II. A New Parafocusing Camera III. Applications to the Study of Chromium, Hafnium, Molybdenum, Rhodium, Ruthenium and Tungsten, J. Less Common Met., 1963, 5, p 258-270

    Article  Google Scholar 

  57. Z. Blazina and R. Trojko, Structural Investigations of the Nb1−x Si x T2 and Nb1−x Al x T2 (T = Cr, Mn, Fe Co, Ni) Systems, J. Less-Common Met., 1986, 119, p 297-305

    Article  Google Scholar 

  58. M.E. Straumanis and S. Zyszczynski, Lattice Parameters, Thermal Expansion Coefficients and Densities of Nb, and of Solid Solutions Nb-O and Nb-N-O and Their Defect Structure, J. Appl. Cryst., 1970, 3, p 1-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Jülich Supercomputing Centre (JSC) for granting computing time for this work on the supercomputer JUROPA. Financial support through the Portfolio Project “Materials Research for Future Energy Supply” funded by the Helmholtz Association and by RFBR Project No. 14-08-31522 мoл_a is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Schmetterer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmetterer, C., Khvan, A., Jacob, A. et al. A New Theoretical Study of the Cr-Nb System. J. Phase Equilib. Diffus. 35, 434–444 (2014). https://doi.org/10.1007/s11669-014-0313-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-014-0313-y

Keywords

Navigation