Skip to main content
Log in

Drought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approach

  • Research Papers
  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Large-scale annual climate indices were used to forecast annual drought conditions in the Maharlu-Bakhtegan watershed, located in Iran, using a neuro-fuzzy model. The Standardized Precipitation Index (SPI) was used as a proxy for drought conditions. Among the 45 climate indices considered, eight identified as most relevant were the Atlantic Multidecadal Oscillation (AMO), Atlantic Meridional Mode (AMM), the Bivariate ENSO Time series (BEST), the East Central Tropical Pacific Surface Temperature (NINO 3.4), the Central Tropical Pacific Surface Temperature (NINO 4), the North Tropical Atlantic Index (NTA), the Southern Oscillation Index (SOI), and the Tropical Northern Atlantic Index (TNA). These indices accounted for 81% of the variance in the Principal Components Analysis (PCA) method. The Atlantic surface temperature (SST: Atlantic) had an inverse relationship with SPI, and the AMM index had the highest correlation. Drought forecasts of neuro-fuzzy model demonstrate better prediction at a two-year lag compared to a stepwise regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad S, Simonovic S (2005) An Artificial Neural Network model for generating hydrograph from hydro-meteorological parameters. Journal of Hydrology 315(1–4): 236–251. DOI: 10.1016/j.jhydrol.2005.03.032

    Article  Google Scholar 

  • Ahmad S, Kalra A, Stephen H (2010a) Estimating soil moisture using remote sensing data: a machine learning approach. Advances in Water Resources 33(1): 69–80. DOI: 10.1016/j.advwatres.2009.10.008

    Article  Google Scholar 

  • Ahmad MM, Ghumman AR, Ahmad S, et al. (2010b) Estimation of a unique pair of Nash model parameters: an optimization approach. Water Resources Management 24(12): 2971–2989. DOI: 10.1007/s11269-010-9590-3

    Article  Google Scholar 

  • Ahmad S, Prashar D (2010) Evaluating municipal water conservation policies using a dynamic simulation model. Water Resources Management 24(13): 3371–3395. DOI: 10.1007/s11269-010-9611-2

    Article  Google Scholar 

  • Cañón J, Gonzales J, Valde’s J (2007) Precipitation in the Colorado River Basin and its low frequency associations with PDO and ENSO signals. Journal of Hydrology 333(2): 252–264. DOI: 10.1016/j.jhydrol.2006.08.015

    Article  Google Scholar 

  • Carrier C, Kalra A, Ahmad S (2013) Using Paleo reconstructions to improve streamflow forecast lead time in the Western United States. Journal of the American Water Resources Association 9(6): 1351–1366. DOI: 10.1111/jawr.12088

    Article  Google Scholar 

  • Chau KW, Wu CL, Li YS (2005) Comparison of several flood forecasting models in Yangtze River. Journal of Hydrologic Engineering 10(6): 485–491. DOI: 10.1061/(ASCE)1084-0699(2005)10:6(485)

    Article  Google Scholar 

  • Chiew FHS, Piechota TC, Dracup JA, et al. (1998) El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting. Journal of Hydrology 204(1): 138–149. DOI: 10.1016/S0022-1694(97) 00121-2

    Article  Google Scholar 

  • Dastorani MT, Afkhami H, Sharifidarani H, et al. (2010) Application of ANN and ANFIS models on dryland precipitation prediction (Case Study: Yazd in Central Iran). Journal Apply Science 10: 2387–2394

    Article  Google Scholar 

  • Dawadi S, Ahmad S (2012) Changing climatic conditions in the Colorado River Basin: Implications for water resources management. Journal of Hydrology 430: 127–141. DOI: 10.1016/j.jhydrol.2012.02.010

    Article  Google Scholar 

  • Dawadi S, Ahmad S (2013) Evaluating the impact of demandside management on water resources under changing climatic conditions and increasing population. Journal of Environmental Management 114: 261–275. DOI: 10.1016/j.jenvman.2012.10.015

    Article  Google Scholar 

  • El-Shafie A, Jaafer O, Seyed A (2011) Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. International Journal of the Physical Sciences 6(12): 2875–2888. DOI: 10.5897/AJBM11.515

    Google Scholar 

  • Fallah-Ghalhary GA, Habibi-Nokhandan M, Mousavi-Baygi M, et al. (2010) Spring rainfall prediction based on remote linkage controlling using adaptive neuro-fuzzy inference system (ANFIS), Theoretical and Applied Climatology 101: 217–233. DOI: 10.1007/s00704-009-0194-x

    Article  Google Scholar 

  • Farokhnia A, Morid S, Byun HR (2011) Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques. Theoretical and Applied Climatology 104: 71–81. DOI: 10.1007/s00704-010-0317-4

    Article  Google Scholar 

  • Fiorillo F, Esposito L, Guadagno FM (2010) Karst spring discharges analysis in relation to drought periods, using the SPI. Water Resource Management 24: 1867–1884. DOI: 10.1007/s11269-009-9528-9

    Article  Google Scholar 

  • Forsee W, Ahmad S (2011) Evaluating urban stormwater infrastructure design in response to projected climate change. ASCE Journal of Hydrologic Engineering 16: 865–873. DOI: 10.1061/(ASCE)HE.1943-5584.0000383

    Article  Google Scholar 

  • Freiwan M, Kadioǧlu M (2008) Climate variability in Jordan. International Journal of Climatology 28(1): 69–89. DOI: 10.1002/joc.1512

    Article  Google Scholar 

  • Gaughan AE, Waylen PR (2012) Spatial and temporal precipitation variability in the Okavangoe-Kwandoe-Zambezi catchment, southern Africa. Journal of Arid Environments 82: 19–30. DOI: 10.1016/j.jaridenv.2012.02.007

    Article  Google Scholar 

  • Ghumman AR, Ahmad S, Khan RA, Hashmi HN (2014) Comparative Evaluation of Implementing Participatory Irrigation Management in Punjab Pakistan. Irrigation and Drainage 63(3):315–327. DOI: 10.1002/ird.1809

    Article  Google Scholar 

  • Ioannou K, Myronidis D, Lefakis P, et al. (2010) The use of artificial neural networks (ANNs) for the forecast of precipitation levels of lake Doirani (N. Greece). Fresenius Environmental Bulletin 19(9): 1921–1927

    Google Scholar 

  • Jang JS (1993) ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665–685. DOI: 10.1109/21.256541

    Article  Google Scholar 

  • Janga Reddy M, Maity R (2007) Regional Rainfall Forecasting using Large Scale Climate Teleconnections and Artificial Intelligence Techniques. Journal of Intelligent Systems 16(4): 307–322. DOI: 10.1515/JISYS.2007.16.4.307

    Google Scholar 

  • Jeong CH, Shin Ju-Y, Kim T, et al. (2012) Monthly precipitation forecasting with a Neuro-Fuzzy Model. Water Resource Management 26: 4467–4483. DOI: 10.1007/s11269-012-0157-3

    Article  Google Scholar 

  • Kalra A, Ahmad S (2009) Using oceanic atmospheric oscillations for long lead time streamflow forecasting. Water Resources Research 45(3):W03413. DOI: 10.1029/2008WR006855

    Article  Google Scholar 

  • Kalra A, Ahmad S (2011) Evaluating changes and estimating seasonal precipitation for the Colorado River Basin using a stochastic nonparametric disaggregation technique. Water Resources Research 47(5): W05555. DOI: 10.1029/2010 WR009118

    Article  Google Scholar 

  • Kalra A, Ahmad S (2012) Estimating annual precipitation for the Colorado River Basin using ocean ice atmospheric oscillations. Water Resources Research 48:W06527. DOI: 10.1029/2011WR010667

    Article  Google Scholar 

  • Kalra A, Li L, Li X, et al. (2013a) Improving streamflow forecast lead time using oceanic-atmospheric oscillations for Kaidu River Basin, Xinjiang, China. Journal of Hydrological Engineering 18(8): 1031–1040. DOI: 10.1061/(ASCE)HE.1943-5584.0000707

    Article  Google Scholar 

  • Kalra A, Miller PW, Lamb KW, et al. (2013b) Using large scale climatic patterns for improving long lead time streamflow forecasts for Gunnison and San Juan River Basins. Hydrological Processes 27(11): 1543–1559. DOI: 10.1002/hyp.9236

    Article  Google Scholar 

  • Kalra A, Ahmad S, Nayak A (2013c) Increasing streamflow forecast lead time for snowmelt driven catchment based on large scale climate patterns. Advances in Water Resources 53: 150–162. DOI: 10.1016/j.advwatres.2012.11.003

    Article  Google Scholar 

  • Karabork MC, Kahya E, Karaca M (2005) The influences of the Southern and North Atlantic Oscillations on climatic surface variables in Turkey. Hydrological processes 19: 1185–1211. DOI: 10.1002/hyp.5560

    Article  Google Scholar 

  • Karimi-Googhari SH, Lee TS. (2011) Applicability of adaptive Neuro-Fuzzy Inference Systems in daily reservoir inflow forecasting. International Journal of Soft Computing 6(3): 75–84. DOI: 10.3923/ijscomp.2011.75.84

    Article  Google Scholar 

  • Khan MA, Gadiwala MS (2013) A study of drought over Sindh (Pakistan) Using Standardized Precipitation Index (SPI) 1951 to 2010. Pakistan Journal of Meteorology 9(18): 15–22.

    Google Scholar 

  • Kisi O, Nia AM, Gosheh MG, et al. (2012) Intermittent stream flow forecasting by using several data driven techniques. Water Resource Management 26(2): 457–474. DOI: 10.1007/s11269-011-9926-7

    Article  Google Scholar 

  • Kisi O, Shiri J (2011) Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models. Water Resource Management 25: 3135–3152. DOI: 10.1007/s11269-011-9849-3

    Article  Google Scholar 

  • Kumar DN, Reddy MJ, Maity R (2007) Regional rainfall forecasting using Large Scale Climate Teleconnections and Artificial Intelligence Techniques. Journal of Intelligent Systems 16(4): 307–322. DOI: 10.1515/JISYS.2007.16.4.307

    Google Scholar 

  • Kurtulus B, Razack M (2010) Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy. Journal of Hydrology 381(1–2): 101–111. DOI: 10.1016/j.jhydrol.2009.11.029

    Article  Google Scholar 

  • Matyasovszky I (2003) The relationship between NAO and rainfall in Hungary and its nonlinear connection with ENSO. Theoretical and Applied Climatology 74: 69–75. DOI: 10.1007/s00704-002-0697-1.

    Article  Google Scholar 

  • McKee Thomas B, Doesken Nolan J, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology 17(22):179–183. American Meteorological Society, Boston, MA, USA.

    Google Scholar 

  • Melesse AM, Ahmad S, McClain ME, et al. (2011) Suspended sediment load prediction of river systems: an artificial neural networks approach. Agricultural Water Management 98(5): 855–866. DOI: 10.1016/j.agwat.2010.12.012

    Article  Google Scholar 

  • Mirchi A, Madani K, Watkins D, et al. (2012) Synthesis of system dynamics tools for holistic conceptualization of water resources problems. Water Resources Management 26(9): 2421–2442. DOI: 10.1007/s11269-012-0024-2

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, van Liew MW, et al. (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers 50(3): 885–900.

    Google Scholar 

  • Morid S, Moghaddasi M, Arshad S, et al. (2005) Drought Index Package (Version 2). Tarbiat Modarres University, Tehran, Iran.

    Google Scholar 

  • Mosquera-Machado S, Ahmad S (2007) Flood hazard assessment of Atrato River in Colombia. Water Resource Management 21(3): 591–609. DOI: 10.1007/s11269-006-9032-4

    Article  Google Scholar 

  • Myronidis D, Stathis D, Ioannou K, et al. (2012) An integration of statistics temporal methods to track the effect of drought in a shallow Mediterranean Lake. Water Resources Management 26(15): 4587–4605. DOI: 10.1007/s11269-012-0169-z

    Article  Google Scholar 

  • National Climatic Data Center, NOAA (2013) Standardized Precipitation Index, Twelve Months, May 2012–April 2013.

    Google Scholar 

  • Nayak PC, Sudheer KP, Rangan DM, et al. (2004) A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology 291(1): 52–66.

    Article  Google Scholar 

  • Nazemosadat MJ, Cordey I (2000) On the relationship between ENSO and autumn rainfall in Iran. International Journal of Climatology 20(1): 47–61. DOI: 10.1002/(SICI)1097-0088(200001)20:1〈47::AID-JOC461〉3.0.CO;2-P

    Article  Google Scholar 

  • Noori R, Sabahi MS, Karbassi AR, et al. (2010) Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination 260: 129–136. DOI: 10.1016/j.desal.2010.04.053

    Article  Google Scholar 

  • Nourani V, Komasi M, Alami MT (2013) Geomorphology-based genetic programming approach for rainfall-runoff modeling. Journal of Hydroinformatics 15(2):427–445. DOI: 10.2166/hydro.2012.113

    Article  Google Scholar 

  • Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, et al. (2001) The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic Region. Journal of Climate 14: 3408–3420.

    Article  Google Scholar 

  • Puri S, Stephen H, Ahmad S (2011a) Relating TRMM precipitation radar land surface backscatter response to soil moisture in the southern United States. Journal of Hydrology 402: 115–125. DOI: 10.1016/j.jhydrol.2011.03.012

    Article  Google Scholar 

  • Puri S, Stephen H, Ahmad S (2011b) Relating TRMM precipitation radar backscatter to water stage in wetlands. Journal of Hydrology 401(3-4): 240–249. DOI: 10.1016/j.jhydrol.2011.02.026.

    Article  Google Scholar 

  • Qaiser K, Ahmad S, Johnson W, et al. (2011) Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region. Journal of Environmental Management 92(8): 2061–2068. DOI: 10.1016/j.jenvman.2011.03.031

    Article  Google Scholar 

  • Qaiser K, Ahmad S, Johnson W, et al. (2013) Evaluating water conservation and reuse policies using a Dynamic Water Balance Model. Environmental Management 51(2): 449–458. DOI: 10.1007/s00267-012-9965-8

    Article  Google Scholar 

  • Sagarika S, Kalra A, Ahmad S (2014) Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. Journal of Hydrology 517:36–53. DOI: 10.1016/j.jhydrol.2014.05.002

    Article  Google Scholar 

  • Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resource Management 26(6): 1715–1729. DOI: 10.1007/s11269-012-9982-7

    Article  Google Scholar 

  • Santos JA, Corte J, Leite SM (2005) Weather regimes and their connection to the winter rainfall in Portugal. International Journal of Climatology 25(1): 33–50. DOI: 10.1002/joc.1101

    Article  Google Scholar 

  • Shrestha E, Ahmad S, Johnson W, et al. (2012) The carbon footprint of water management policy options. Energy Policy 42: 201–212. DOI: 10.1016/j.enpol.2011.11.074

    Article  Google Scholar 

  • Shrestha E, Ahmad S, Johnson W, et al. (2011) Carbon footprint of water conveyance verses desalination as alternatives to expand water supply. Desalination 280(1–3): 33–43. DOI: 10.1016/j.desal.2011.06.062

    Article  Google Scholar 

  • Sigaroodi SK, Chen Q, Ebrahimi S, et al. (2013) Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran. Hydrology and Earth System Sciences Discussions 10(11): 13333–13361. DOI: 10.5194/hessd-10-13333-2013

    Article  Google Scholar 

  • Stephen H, Ahmad S, Piechota TC, et al. (2010) Relating surface backscatter response from TRMM precipitation radar to soil moisture: results over a semiarid region. Hydrology and Earth System Sciences 14(2): 193–204.

    Article  Google Scholar 

  • Tyson PD (1987) Climate change and variability in Southern Africa. Quarterly Journal of Royal Meteorological Society 114(480): 552–562.

    Google Scholar 

  • Vedwan N, Ahamd S, Miralles-Wihelm F, et al. (2008) Institutional evolution in Lake Okeechobee Management in Florida: Characteristics, Impacts, and Limitations. Water Resources Management 22(6): 699–718. DOI: 10.1007/s11269-007-9187-7

    Article  Google Scholar 

  • Venkatesan AK, Ahmad S, Johnson W, et al. (2011a) Salinity reduction and energy conservation in direct and indirect potable water reuse. Desalination 272(1–3): 120–127. DOI: 10.1016/j.desal.2011.01.007.

    Article  Google Scholar 

  • Venkatesan AK, Ahmad S, Johnson W, et al. (2011b) System dynamics model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas valley. Science of the Total Environment 409(13): 2616–2625. DOI: 10.1016/j.scitotenv.2011.03.018

    Article  Google Scholar 

  • Wu G, Li L, Ahmad S, et al. (2013) A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China. Water Resources Management 27(8): 3085–3101. DOI: 10.1007/s11269-013-0334-z

    Article  Google Scholar 

  • Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resources Research 45: W08432. DOI: 10.1029/2007WR006737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choubin, B., Khalighi-Sigaroodi, S., Malekian, A. et al. Drought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approach. J. Mt. Sci. 11, 1593–1605 (2014). https://doi.org/10.1007/s11629-014-3020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3020-6

Keywords

Navigation