Skip to main content
Log in

Direct plant regeneration from in vitro-derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

A rapid and reproducible protocol for direct plant regeneration has been established using in vitro-derived, actively growing shoot apical meristems (SAMs) of the genotype 'CO(Ra)-14'. Shoot apical meristems from 3-day-old seedlings of three finger millet genotypes viz, 'CO(Ra)-14', 'Try-1', and 'Paiyur-2' were assessed for the efficiency of direct shoot induction. The regeneration efficiency of 'CO(Ra)-14' surpassed the other two genotypes and produced a mass of green, multiple shoots within 12 d on Murashige and Skoog medium containing 17.6 μM 6-benzylaminopurine (BA), 0.9 μM 2,4-dichlorophenoxyacetic acid in combination with 750 mg L−1 proline, 500 mg L−1 casein enzymatic hydrolysate, and 2 mg L−1 glycine. 'CO(Ra)-14' showed a maximum frequency of multiple shoot regeneration (96%) with an average of 8.3 shoots per explant. The age and size of shoot apical meristems played a crucial role in triggering adventitious shoot bud proliferation. The multiple shoot buds elongated spontaneously upon reducing the concentration of BA (to 11.0 μM) in the shoot induction medium. The in vitro proliferated shoots were rooted best in half-strength MS medium containing 2.8 μM indole-3-acetic acid and successfully acclimated in the field, subsequently developing into fertile plants. Thus, we report a short tenure (45 d) in vitro whole plant regeneration system, which could be effectively utilized for the production of transgenic finger millet plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Ahmad A, Zhong H, Wang W, Sticklen MB (2002) Shoot apical meristem: In vitro regeneration and morphogenesis in wheat (Triticum aestivum L.). In Vitro Cell Dev Biol – Plant 38:163–167

    Article  Google Scholar 

  • Arockiasamy S, Ignacimuthu S (2007) Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep 26:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Geetha KN, Manjunatha V, Shankar AG (2012) An efficient high throughput plant regeneration and transformation protocol for production of transgenics tolerant to salt in finger millet. Intl J Forestry Crop Improv 3:16–20

    Google Scholar 

  • Barro F, Martin A, Lazzeri PA, Barcelo P (1999) Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 108:161–167

    Article  Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    Article  CAS  PubMed  Google Scholar 

  • Burner DM, Grisham MP (1995) Induction and stability of phenotypic variation in sugarcane as affected by propagation procedure. Crop Sci 35:875–880

    Article  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol – Plant 44:427–435

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2009) Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31:779–788

    Article  CAS  PubMed  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2010) Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum Linn.). Plant Cell Tiss Organ Cult 102:153–162

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2011) Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30:1759–1770

    Article  PubMed  Google Scholar 

  • Cheng M, Hu T, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol – Plant 39:595–604

    Article  CAS  Google Scholar 

  • Cho MJ, Choi HW, Okamoto D, Zhang S, Lemaux P (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep 21:467–474

    CAS  PubMed  Google Scholar 

  • Cho MJ, Yano H, Okamoto D, Kim HK, Jung HR, Newcomb K, Le VK, Yoo HS, Langham R, Buchanan BB, Lemaux PG (2004) Stable transformation of rice (Oryza sativa L.) via micro projectile bombardment of highly regenerative, green tissues derived from mature seed. Plant Cell Rep 22:483–489

    Article  CAS  PubMed  Google Scholar 

  • Devi P, Zhong H, Sticklen MB (2000) In vitro morphogenesis of pearl millet [Pennisetum glaucum. (L.) R.Br.]: efficient production of multiple shoots and inflorescences from shoot apices. Plant Cell Rep 19:546–550

    Article  CAS  Google Scholar 

  • Dey M, Bakshi S, Galiba G, Sahoo L, Panda SK (2012) Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3. Biotech 2:233–240

    Google Scholar 

  • Eapen S, George L (1990) Influence of phytohormones, carbohydrates, amino acids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet. Plant Cell Tiss Organ Cult 22:87–93

    Article  CAS  Google Scholar 

  • George L, Eapen S (1990) High frequency plant-regeneration through direct shoot development and somatic embryogenesis from immature inflorescence cultures of finger millet (Eleusine coracana Gaertn). Euphytica 48:269–274

    Article  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyahi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282

    Article  CAS  Google Scholar 

  • Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37:135–147

    Article  CAS  PubMed  Google Scholar 

  • Itoh JI, Sato Y, Nagato Y, Matsuoka M (2006) Formation, maintenance and function of the shoot apical meristem in rice. Plant Mol Biol 60:827–842

    Article  CAS  PubMed  Google Scholar 

  • Jagga-Chugh SJ, Kachhwaha S, Sharma M, Kothari-Chajer A, Kothari SL (2012) Optimization of factors influencing microprojectile bombardment-mediated genetic transformation of seed-derived callus and regeneration of transgenic plants in Eleusine coracana (L.) Gaertn. Plant Cell Tiss Organ Cult 109:401–410

    Article  CAS  Google Scholar 

  • Karp A (1991) On the current understanding of somaclonal variation. In: Miflin BJ, Miflin HF (eds) Oxford surveys of plant molecular and cell biology. Oxford University Press, New York, pp 1–58

    Google Scholar 

  • Karthikeyan A, Pandian STK, Ramesh M (2009) High frequency plant regeneration from embryogenic callus of a popular indica rice (Oryza sativa L.). Physiol Mol Biol Plants 15:371–375

    Article  PubMed Central  PubMed  Google Scholar 

  • Kothari SL, Agarwal K, Kumar S (2004) Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger millet—Eleusine coracana (L.) Gaertn. In Vitro Cell Dev Biol – Plant 40:515–519

    Article  CAS  Google Scholar 

  • Kumar S, Agarwal K, Kothari SL (2001) In vitro induction and enlargement of apical domes and formation of multiple shoots in finger millet, Eleusine coracana (L.) Gaertn and crowfoot grass, Eleusine indica (L.) Gaertn. Curr Sci 81:1482–1485

    CAS  Google Scholar 

  • Labra M, Savini C, Bracale M, Pelucchi N, Colombo L, Bardini M, Sala F (2001) Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep 20:325–330

    Article  CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Wang L, Elliott A, Grof CPL, Berding N, Smith GR (2006) Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep 25:1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Latha AM, Rao KV, Reddy VD (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Mallikarjuna K, Rajendrudu G (2007) High frequency in vitro propagation of Holarrhena antidysenterica from nodal buds of mature tree. Biol Plant 51:525–529

    Article  CAS  Google Scholar 

  • Mohanty BD, Gupta SD, Ghosh PD (1985) Callus initiation and plant regeneration in ragi (Eleusine coracana Gaertn.). Plant Cell Tiss Organ Cult 5:147–150

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mythili PK, Satyavati V, Pavankumar G, Rao MVS, Manga V (1997) Genetic analysis of short term callus culture and morphogenesis in pearl millet, Pennisetum glacum. Plant Cell Tiss Organ Cult 50:171–178

    Article  Google Scholar 

  • Nhut DT, Le BV, Van KTT (2000) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue. J Plant Physiol 157:559–565

    Article  CAS  Google Scholar 

  • Ozawa K, Komamine A (1989) Establishment of a system of high-frequency embryogenesis from long-term cell suspension cultures of rice (Oryza sativa L.). Theor Appl Genet 77:205–211

    Article  CAS  PubMed  Google Scholar 

  • Piqueras A, Alburquerque N, Folta KM (2010) Explants used for the generation of transgenic plants. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin Heidelberg, pp 31–56

    Chapter  Google Scholar 

  • Pius J, George L, Eapen S, Rao PS (1994) Influence of genotype and phytohormones on somatic embryogenesis and plant regeneration in finger millet. Proc Indian Natn Sci Acad B60(1):53–56

    Google Scholar 

  • Poddar K, Vishnoi RK, Kothari SL (1997) Plant regeneration from embryogenic callus of finger millet Eleusine coracana (L.) Gaertn. on higher concentrations of NH4NO3 as a replacement of NAA in the medium. Plant Sci 129:101–106

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V, Daniel MA, Ignacimuthu S (2013) Efficacious somatic embryogenesis and fertile plant recovery from shoot apex explants of onion (Allium cepa. L.). In Vitro Cell Dev Biol – Plant 49:285–293

    Article  Google Scholar 

  • Ramesh M, Murugiah V, Gupta AK (2009) Efficient in vitro plant regeneration via leaf base segments of indica rice (Oryza sativa L.). Indian J Exp Biol 47:68–74

    CAS  PubMed  Google Scholar 

  • Rangan TS (1976) Growth and plantlet regeneration in tissue cultures of some Indian millets: Paspalum scrobiculatum L., Eleusine coracana Gaertn. and Pennisetum typhoideum Pers. Zeitschrift für Pflanzenphysiologie 78:208–216

    Article  CAS  Google Scholar 

  • Sastri BN (1989) The wealth of india: a dictionary of indian raw materials and industrial products, Vol. III (D-E), Publication and Information Directorate. CSIR, New Delhi, pp 160–166

    Google Scholar 

  • Sezgin M, Dumanoglu H (2014) Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Castanea sativa Mill.). In Vitro Cell Dev Biol – Plant 50:58–68

    Article  CAS  Google Scholar 

  • Sharma VK, Hansch R, Mendel RR, Schulze J (2004) A highly efficient plant regeneration system through multiple shoot differentiation from commercial cultivars of barley (Hordeum vulgare L.) using meristematic shoot segments excised from germinated mature embryos. Plant Cell Rep 23:9–16

    CAS  PubMed  Google Scholar 

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tiss Organ Cult 105:93–104

    Article  CAS  Google Scholar 

  • Srivastav S, Kothari SL (2002) Embryogenic callus induction and high frequency plant regeneration in pearl millet. Cer Res Commun 30:69–74

    Google Scholar 

  • Sticklen MB, Oraby HF (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol – Plant 41:187–200

    Article  CAS  Google Scholar 

  • Yemets AI, Klimkina LA, Tarassenko LV, Blume YB (2003) Efficient callus formation and plant regeneration of goosegrass (Eleusine indica (L.) Gaertn.). Plant Cell Rep 21:503–510

    CAS  PubMed  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. International Rice Research Institute, Manila (Philippines)

    Google Scholar 

  • Zhang S, Zhang H, Zhang MB (1996) Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.). J Plant Physiol 148:667–671

    Article  CAS  Google Scholar 

  • Zhang S, Cho MJ, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959–966

    Article  CAS  Google Scholar 

  • Zhong H, Srinivasan C, Sticklen MB (1992) In vitro morphogenesis of corn (Zea mays L.). I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187:483–489

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Sun B, Warkentin D, Zhang S, Wu R, Wu T, Sticklen MB (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 110:1097–1107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong H, Wang W, Sticklen MB (1998) In vitro morphogenesis of Sorghum bicolor (L.) Moench: efficient plant regeneration from shoot apices. J Plant Physiol 153:719–726

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author L. Satish sincerely thanked the University Grants Commission, New Delhi, India, for financial support in the form of UGC-BSR fellowship. We thank the Department of Small Millets, Millet Research Station, Tamil Nadu Agricultural University for providing seed material used in the present study. Also, the authors gratefully acknowledge the Bioinformatics Infrastructure Facility of Alagappa University (funded by the Department of Biotechnology, Government of India: Grant No. BT/BI/25/001/2006) for providing the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manikandan Ramesh.

Additional information

Editor: John Forster

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satish, L., Ceasar, S.A., Shilpha, J. et al. Direct plant regeneration from in vitro-derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell.Dev.Biol.-Plant 51, 192–200 (2015). https://doi.org/10.1007/s11627-015-9672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9672-2

Keywords

Navigation