Skip to main content

Advertisement

Log in

Preparation of gel polymer electrolyte with high lithium ion transference number using GO as filler and application in lithium battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High lithium ion transference number (tLi+) is one of the requirements of polymer electrolytes for utilization in lithium secondary batteries. Herein, graphene oxide (GO) is used as a filler to fabricate the homogeneous gel polymer electrolyte (GPE) for pursuing high tLi+. The effect of GO on the whole properties of gel polymer electrolytes including conductivity, lithium ion transference number, electrochemical window, electrochemical stability, and cycling performance are explored. Impressively, the GPE containing 0.3 wt% of GO (labeled as GPE-0.3%) demonstrates a high lithium ion transference number of 0.79 and improved electrochemical stability. The LFP/Li battery with GPE-0.3% as the separator shows excellent electrochemical cycle stability and Coulomb efficiency at 25 °C. The discharge specific capacity retention rate of this battery is 94.4% after 100 cycles at 0.2C. All these features make the gel polymer electrolyte useful as a separator of lithium metal batteries for high-performance lithium ion conductors, which exhibits high safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Caimi S, Wu H, Morbidelli M (2018) PVdF-HFP and ionic-liquid-based, freestanding thin separator for lithium-ion batteries. ACS Appl Energy Mater 1:5224–5232. https://doi.org/10.1021/acsaem.8b00860

    Article  CAS  Google Scholar 

  2. Chen G, Zhang F, Zhou Z, Li J, Tang Y (2018) A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv Energy Mater 8:1801219–1801226. https://doi.org/10.1002/aenm.201801219

    Article  CAS  Google Scholar 

  3. Ali S, Tan C, Waqas M, Lv W, Wei Z, Wu S, Boateng B, Liu J, Ahmed J, Xiong J, Goodenough JB, He W (2018) Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries. Adv Mater Interfaces 5:1701147–1701157. https://doi.org/10.1002/admi.201701147

    Article  CAS  Google Scholar 

  4. Balo L, Shalu, Gupta H, Kumar Singh V, Kumar Singh R (2017) Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim Acta 230:123–131. https://doi.org/10.1016/j.electacta.2017.01.177

    Article  CAS  Google Scholar 

  5. Xia Y, Liang YF, Xie D, Wang XL, Zhang SZ, Xia XH, Gu CD, Tu JP (2019) A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem Eng J 358:1047–1053. https://doi.org/10.1016/j.cej.2018.10.092

    Article  CAS  Google Scholar 

  6. Singh SK, Gupta H, Balo L, Shalu, Singh VK, Tripathi AK, Verma YL, Singh RK (2018) Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application. Ionics 24:1895–1906. https://doi.org/10.1007/s11581-018-2458-x

    Article  CAS  Google Scholar 

  7. Gao S, Zhong J, Xue G, Wang B (2014) Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide. J Membr Sci 470:316–322. https://doi.org/10.1016/j.memsci.2014.07.044

    Article  CAS  Google Scholar 

  8. Fu J, Lu Q, Shang D, Chen L, Jiang Y, Xu Y, Yin J, Dong X, Deng W, Yuan S (2018) A novel room temperature POSS ionic liquid-based solid polymer electrolyte. J Mater Sci 53:8420–8435. https://doi.org/10.1007/s10853-018-2135-5

    Article  CAS  Google Scholar 

  9. Zhang Y, Song Y-Z, Yuan J-J, Yin X, Sun C-C, Zhu B-K (2018) Polypropylene separator coated with a thin layer of poly(lithium acrylate-co-butyl acrylate) for high-performance lithium-ion batteries. J Appl Polym Sci 135:46423–46431. https://doi.org/10.1002/app.46423

    Article  CAS  Google Scholar 

  10. Cao J, Wang L, He X, Fang M, Gao J, Li J, Deng L, Chen H, Tian G, Wang J, Fan S (2013) In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J Mater Chem A 1:5955–5962. https://doi.org/10.1039/C3TA00086A

    Article  CAS  Google Scholar 

  11. Zhao L, Huang Y, Liu B, Huang Y, Song A, Lin Y, Wang M, Li X, Cao H (2018) Gel polymer electrolyte based on polymethyl methacrylate matrix composited with methacrylisobutyl-polyhedral oligomeric silsesquioxane by phase inversion method. Electrochim Acta 278:1–12. https://doi.org/10.1016/j.electacta.2018.05.012

    Article  CAS  Google Scholar 

  12. Liu B, Huang Y, Zhao L, Huang Y, Song A, Lin Y, Wang M, Li X, Cao H (2018) A novel non-woven fabric supported gel polymer electrolyte based on poly(methylmethacrylate-polyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries. J Membr Sci 564:62–72. https://doi.org/10.1016/j.memsci.2018.07.014

    Article  CAS  Google Scholar 

  13. He C, Liu J, Cui J, Li J, Wu X (2018) A gel polymer electrolyte based on Polyacrylonitrile/organic montmorillonite membrane exhibiting dense structure for lithium ion battery. Solid State Ionics 315:102–110. https://doi.org/10.1016/j.ssi.2017.12.014

    Article  CAS  Google Scholar 

  14. Pignanelli F, Romero M, Faccio R, Fernández-Werner L, Mombrú AW (2018) Enhancement of lithium-ion transport in poly(acrylonitrile) with hydrogen titanate nanotube fillers as solid polymer electrolytes for lithium-ion battery applications. J Phys Chem C 122:1492–1499. https://doi.org/10.1021/acs.jpcc.7b10725

    Article  CAS  Google Scholar 

  15. Li B, Huang Y, Cheng P, Liu B, Yin Z, Lin Y, Li X, Wang M, Cao H, Wu Y (2019) Upgrading comprehensive performances of gel polymer electrolyte based on polyacrylonitrile via copolymerizing acrylonitrile with N-vinylpryrrolidone. Electrochim Acta 1:320. https://doi.org/10.1016/j.electacta.2019.134572

    Article  CAS  Google Scholar 

  16. Liu B, Huang Y, Cao H, Zhao L, Huang Y, Song A, Lin Y, Li X, Wang M (2018) A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J Membr Sci 545:140–149. https://doi.org/10.1016/j.memsci.2017.09.077

    Article  CAS  Google Scholar 

  17. Yang C-X, Sun X-Y, Liu B, Lian H-T (2007) Determination of total phosphorus in water sample by digital imaging colorimetry. Chin J Anal Chem 35:850–853. https://doi.org/10.1016/S1872-2040(07)60059-0

    Article  CAS  Google Scholar 

  18. Guo Q, Han Y, Wang H, Sun W, Jiang H, Zhu Y, Zheng C, Xie K (2018) Thermo and electrochemical-stable composite gel polymer electrolytes derived from core-shell silica nanoparticles and ionic liquid for rechargeable lithium metal batteries. Electrochim Acta 288:101–107. https://doi.org/10.1016/j.electacta.2018.08.058

    Article  CAS  Google Scholar 

  19. Caillon-Caravanier M, Claude-Montigny B, Lemordant D, Bosser G (2002) Absorption ability and kinetics of a liquid electrolyte in PVDF-HFP copolymer containing or not SiO2. J Power Sources 107:125–132. https://doi.org/10.1016/S0378-7753(01)01008-4

    Article  CAS  Google Scholar 

  20. Zalewska A, Walkowiak M, Niedzicki L, Jesionowski T, Langwald NJEA (2010) Study of the interfacial stability of PVdF/HFP gel electrolytes with sub-micro and nano-sized surface-modified silicas. Electrochim Acta 55:1308–1313. https://doi.org/10.1016/j.electacta.2009.04.002

    Article  CAS  Google Scholar 

  21. Yang CC, Lian ZY, Lin SJ, Shih JY, Chen WHJEA (2014) Preparation and application of PVDF-HFP composite polymer electrolytes in LiNi0.5Co0.2Mn0.3O2lithium-polymer batteries. Electrochim Acta 134:258–265. https://doi.org/10.1016/j.electacta.2014.04.100

    Article  CAS  Google Scholar 

  22. Liao Y, Sun C, Hu S, Li WJEA (2013) Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim Acta 89:461–468. https://doi.org/10.1016/j.electacta.2012.11.095

    Article  CAS  Google Scholar 

  23. Li Z, Su G, Gao D, Wang X, Li XJEA (2004) Effect of AlO nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochim Acta 49:4633–4639. https://doi.org/10.1016/j.electacta.2004.05.018

    Article  CAS  Google Scholar 

  24. Hwang JJ, Peng HH, Yeh JM (2015) α-Al2O3 improves the properties of gel polyacrylonitrile nanocomposite electrolytes used as electrolyte materials in rechargeable lithium batteries. J Appl Polym Sci 120:2041–2047. https://doi.org/10.1002/app.33311

    Article  CAS  Google Scholar 

  25. Sarnowska A, Polska I, Niedzicki L, Marcinek M, Zalewska A (2011) Properties of poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolytes containing modified inorganic Al2O3 and TiO2 filler, complexed with different lithium salts. Electrochim Acta 57:180–186. https://doi.org/10.1016/j.electacta.2011.04.079

    Article  CAS  Google Scholar 

  26. Chung S, Wang Y, Persi L, Croce F, Greenbaum S, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97:644–648. https://doi.org/10.1016/S0378-7753(01)00748-0

    Article  Google Scholar 

  27. Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44:5372–5376. https://doi.org/10.1063/1.1662158

    Article  CAS  Google Scholar 

  28. Hayashi A, Noi K, Sakuda A, Tatsumisago M (2012) Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 22:856–865. https://doi.org/10.1038/ncomms1843

    Article  CAS  Google Scholar 

  29. Lepage D, Michot C, Liang G, Gauthier M, Schougaard SB (2011) A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angew Chem Int Ed 50:6884–6887. https://doi.org/10.1002/anie.201101661

    Article  CAS  Google Scholar 

  30. Seki S, Kobayashi Y, Miyashiro H, Yamanaka A, Mita Y, Iwahori T (2005) Degradation mechanism analysis of all-solid-state lithium polymer secondary batteries by using the impedance measurement. J Power Sources 146:741–744. https://doi.org/10.1016/j.jpowsour.2005.03.072

    Article  CAS  Google Scholar 

  31. Kim J-W, Ji K-S, Lee J-P, Park J-W (2003) Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2. J Power Sources 119:415–421. https://doi.org/10.1016/S0378-7753(03)00263-5

    Article  CAS  Google Scholar 

  32. Yuan M, Erdman J, Tang C, Ardebili H (2014) High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Advances 4:59637–59642. https://doi.org/10.1039/C4RA07919A

    Article  CAS  Google Scholar 

  33. Kammoun M, Berg S, Ardebili H (2015) Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale 7:17516–17522. https://doi.org/10.1039/C5NR04339E

    Article  CAS  PubMed  Google Scholar 

  34. Cheng S, Smith DM, Li CY (2015) Anisotropic ion transport in a poly(ethylene oxide)–LiClO4 solid state electrolyte templated by graphene oxide. Macromolecules 48:4503–4510. https://doi.org/10.1021/acs.macromol.5b00972

    Article  CAS  Google Scholar 

  35. Mohanta J, Padhi DK, Si S (2018) Li-ion conductivity in PEO-graphene oxide nanocomposite polymer electrolytes: a study on effect of the counter anion. J Appl Polym Sci 135:46336–46346. https://doi.org/10.1002/app.46336

    Article  CAS  Google Scholar 

  36. Chen YM, Hsu ST, Tseng YH, Yeh TF, Hou SS, Jan JS, Lee YL, Teng H (2018) Minimization of ion-solvent clusters in gel electrolytes containing graphene oxide quantum dots for lithium-ion batteries. Small 14:e1703571. https://doi.org/10.1002/smll.201703571

    Article  CAS  PubMed  Google Scholar 

  37. Wang C, Shen W, Lu J, Guo S (2017) Graphene oxide doped poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolyte for lithium ion battery. Ionics 23:2045–2053. https://doi.org/10.1007/s11581-017-2037-6

    Article  CAS  Google Scholar 

  38. Ahmad AL, Farooqui UR, Hamid NA (2018) Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer 142:330–336. https://doi.org/10.1016/j.polymer.2018.03.052

    Article  CAS  Google Scholar 

  39. Ahmad AL, Farooqui UR, Hamid NA (2018) Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline)(PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim Acta 283:842–849. https://doi.org/10.1016/j.electacta.2018.07.001

    Article  CAS  Google Scholar 

  40. Ahmad AL, Farooqui UR, Hamid NA (2018) Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries. RSC Adv 8:25725–25733. https://doi.org/10.1039/C8RA03918F

    Article  CAS  Google Scholar 

  41. Li P, Tao CA, Wang B, Huang J, Li T, Wang J (2018) Preparation of graphene oxide-based ink for inkjet printing. J Nanosci Nanotechnol 18:713–718. https://doi.org/10.1166/jnn.2018.13942

    Article  CAS  PubMed  Google Scholar 

  42. Yang YQ, Chang Z, Li MX, Wang XW, Wu YP (2015) A sodium ion conducting gel polymer electrolyte. Solid State Ionics 269:17–17. https://doi.org/10.1016/j.ssi.2014.11.015

    Article  CAS  Google Scholar 

  43. Guo Q, Han Y, Wang H, Xiong S, Sun W, Zheng C, Xie K (2018) Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J Phys Chem C 122:10334–10342. https://doi.org/10.1021/acs.jpcc.8b02693

    Article  CAS  Google Scholar 

  44. Cui Y, Chai J, Du H, Duan Y, Xie G, Liu Z, Cui G (2017) Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries. ACS Appl Mater Interfaces 9:8737–8741. https://doi.org/10.1021/acsami.6b16218

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by National Science Foundation of China (61376125, 21573285, 21705163) and Natural Science Foundation of Hunan Province (2018JJ3597).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfang Wang or Hang Gong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Tao, Ca., Li, Y. et al. Preparation of gel polymer electrolyte with high lithium ion transference number using GO as filler and application in lithium battery. Ionics 26, 4299–4309 (2020). https://doi.org/10.1007/s11581-020-03628-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03628-z

Keywords

Navigation