Skip to main content
Log in

Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Spatio-temporal models have long been used to describe biological systems of cancer, but it has not been until very recently that increased attention has been paid to structural dynamics of the interaction between cancer populations and the molecular mechanisms associated with local invasion. One system that is of particular interest is that of the urokinase plasminogen activator (uPA) wherein uPA binds uPA receptors on the cancer cell surface, allowing plasminogen to be cleaved into plasmin, which degrades the extracellular matrix and this way leads to enhanced cancer cell migration. In this paper, we develop a novel numerical approach and associated analysis for spatio-structuro-temporal modelling of the uPA system for up to two-spatial and two-structural dimensions. This is accompanied by analytical exploration of the numerical techniques used in simulating this system, with special consideration being given to the proof of stability within numerical regimes encapsulating a central differences approach to approximating numerical gradients. The stability analysis performed here reveals instabilities induced by the coupling of the structural binding and proliferative processes. The numerical results expound how the uPA system aids the tumour in invading the local stroma, whilst the inhibitor to this system may impede this behaviour and encourage a more sporadic pattern of invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam J, Bellomo N (1996) A survey of models for tumor-immune system dynamics. Birkhäuser, Boston

    MATH  Google Scholar 

  • Adam L, Mazumdar A, Sharma T, Jones TR, Kumar R (2001) A three-dimensional and temporo-spatial model to study invasiveness of cancer cells by heregulin and prostaglandin e\(_2\). Cancer Res 61:81–87

    Google Scholar 

  • Allen EJ (2009) Derivation of stochastic partial differential equations for size- and age-structured populations. J Biol Dyn 3(1):73–86. https://doi.org/10.1080/17513750802162754

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Omari J, Gourley S (2002) Monotone travelling fronts in an age-structured reaction-diffusion model of a single species. J Math Biol 45(4):294–312. https://doi.org/10.1007/s002850200159

    Article  MathSciNet  MATH  Google Scholar 

  • Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141–171. https://doi.org/10.1007/s00285-010-0369-1

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson A, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899

    Article  MATH  Google Scholar 

  • Anderson ARA, Chaplain MAJ, Newman EL et al (2000) Mathematical modelling of tumour invasion and metastasis. J Theor Med 2(2):129–154

    Article  MATH  Google Scholar 

  • Ayati BP (2006) A structured-population model of proteus mirabilis swarm-colony development. J Math Biol 52(1):93–114. https://doi.org/10.1007/s00285-005-0345-3

    Article  MathSciNet  MATH  Google Scholar 

  • Barinka C, Parry G, Callahan J et al (2006) Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol 363(2):482–495

    Article  Google Scholar 

  • Basse B, Ubezio P (2007) A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies. Bull Math Biol 69(5):1673–1690

    Article  MathSciNet  MATH  Google Scholar 

  • Bellomo N, Preziosi L (2000) Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math Comput Model 32:413–452

    Article  MathSciNet  MATH  Google Scholar 

  • Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(4):593–646

    Article  MathSciNet  MATH  Google Scholar 

  • Benzekry S, Lamont C, Beheshti A et al (2014) Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol 10(8):e1003,800

    Article  Google Scholar 

  • Bertuzzi A, D’Onofrio A, Fasano A, Gandolfi A (2004) Modelling cell populations with spatial structure: steady state and treatment-induced evolution of tumour cords. Discrete Contin Dyn Syst Ser B 4(1):161–186

    MathSciNet  MATH  Google Scholar 

  • Bhuvarahamurthy V, Schroeder J, Kristiansen G et al (2005) Differential gene expression of urokinase-type plasminogen activator and its receptor in human renal cell carcinoma. Oncol Rep 14(3):777–782

    Google Scholar 

  • Bianchi E, Ferrero E, Fazioli F, Mangili F, Wang J, Bender JR, Blasi F, Pardi R (1996) Integrin-dependent induction of functional urokinase receptors in primary t lymphocytes. J Clin Investig 98(5):1133–1141

    Article  Google Scholar 

  • Binder BR, Mihaly J, Prager GW (2007) uPAR–uPA–uPAI-1 interactions and signalling: a vascular biologist’s view. Int J Vasc Biol Med 97:336–342

    Google Scholar 

  • Busenberg S, Iannelli M (1983) A class of nonlinear diffusion problems in age-dependent population dynamics. Nonlinear Anal Theory Methods Appl 7(5):501–529. https://doi.org/10.1016/0362-546X(83)90041-X

    Article  MathSciNet  MATH  Google Scholar 

  • Calsina À, Saldaña J (1995) A model of physiologically structured population dynamics with a nonlinear individual growth rate. J Math Biol 33(4):335–364. https://doi.org/10.1007/BF00176377

    Article  MathSciNet  MATH  Google Scholar 

  • Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl Sci 11(2005):1685–1734

    Article  MathSciNet  MATH  Google Scholar 

  • Chaplain MAJ, Ganesh M, Graham IG (2001) Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J Math Biol 42(5):387–423

    Article  MathSciNet  MATH  Google Scholar 

  • Chapman SJ, Plank MJ, James A, Basse B (2007) A nonlinear model of age and size-structured populations with applications to cell cycles. ANZIAM J 49(02):151

    Article  MathSciNet  MATH  Google Scholar 

  • Chapman A, del Ama LF, Ferguson J, Kamarashev J, Wellbrock C, Huristone A (2014) Heterogeneous tumour subpopulations cooperate to drive invasion. Cell Rep 8:688–695

    Article  Google Scholar 

  • Chaurasia P, Aguirre-Ghiso JA, Liang OD et al (2006) A region in Urokinase plasminogen receptor domain III controlling a functional association with 5beta1 integrin and tumor growth. J Biol Chem 281(21):14852–14863

    Article  Google Scholar 

  • Clayton D, Schifflers E (1987) Models for temporal variation in cancer rates. I: age-period and age-cohort models. Stat Med 6(4):449–467

    Article  Google Scholar 

  • Cushing JM (1998) An introduction to structured population dynamics. In: CBMS-NSF regional conference series in applied mathematics, vol 71. SIAM . https://doi.org/10.1137/1.9781611970005.ch2

  • Cusulin C, Iannelli M, Marinoschi G (2005) Age-structured diffusion in a multi-layer environment. Nonlinear analysis: real world applications 6(1):207–223. https://doi.org/10.1016/j.nonrwa.2004.08.006

    Article  MathSciNet  MATH  Google Scholar 

  • Danø K, Andreasen P, Grøndahl-Hansen J et al (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44:139–266

    Article  Google Scholar 

  • Danø K, Rømer J, Nielsen BS, Bjørn S et al (1999) Cancer invasion and tissue remodeling-cooperation of protease systems and cell types. APMIS 107(1–6):120–127

    Article  Google Scholar 

  • de Roos AM (1997) A gentle introduction to physiologically structured population models. In: Tuljapurkar S, Caswell H (eds) Structured-population models in marine, terrestrial, and freshwater systems, population and community biology series, vol 18. Springer, US, pp 119–204. https://doi.org/10.1007/978-1-4615-5973-3_5

    Chapter  Google Scholar 

  • Delgado M, Molina-Becerra M, Suárez A (2006) A nonlinear age-dependent model with spatial diffusion. J Math Anal Appl 313(1):366–380. https://doi.org/10.1016/j.jmaa.2005.09.042

    Article  MathSciNet  MATH  Google Scholar 

  • Delitala M, Lorenzi T (2012) Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism. J Math Anal Appl 389:439–451. https://doi.org/10.1016/j.jmaa.2011.11.076

    Article  MathSciNet  MATH  Google Scholar 

  • Delitala M, Lorenzi T, Melensi M (2015) Competition between cancer cells and t cells under immunotherapy: a structured population approach. In: ITM web of conferences, vol 5. https://doi.org/10.1051/itmconf/20150500005

  • Deng Q, Hallam TG (2006) An age structured population model in a spatially heterogeneous environment: existence and uniqueness theory. Nonlinear Anal Theory Methods Appl 65(2):379–394. https://doi.org/10.1016/j.na.2005.06.019

    Article  MathSciNet  MATH  Google Scholar 

  • Di Blasio G (1979) Non-linear age-dependent population diffusion. J Math Biol 8(3):265–284. https://doi.org/10.1007/BF00276312

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Temme NM (eds.) (1982) Nonlinear diffusion problems. No. 28 in MC syllabus. Mathematisch Centrum, Amsterdam

  • Diekmann O, Metz JAJ (1994) On the reciprocal relationship between life histories and population dynamics. In: Lecture notes in biomathematics, Chapter Frontiers in mathematical biology, vol 100. Springer, Berlin, pp 263–279

  • Diekmann O, Heijmans HJAM, Thieme HR (1984) On the stability of the cell size distribution. J Math Biol 19(2):227–248

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Gyllenberg M, Metz JAJ, Thieme H (1992) The ’cumulative’ formulation of (physiologically) structured population models. CWI, Amsterdam

    MATH  Google Scholar 

  • Domschke P, Trucu D, Gerisch A et al (2014) Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41–60

    Article  MathSciNet  MATH  Google Scholar 

  • Domschke P, Trucu D, Gerisch A et al (2017) Structured models of cell migration incorporating molecular binding processes. J Math Biol 75:1517–1561. https://doi.org/10.1007/s00285-017-1120-y

    Article  MathSciNet  MATH  Google Scholar 

  • Dufau I, Frongia C, Sicard F, Dedieu L et al (2012) Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 12(1):15

    Article  Google Scholar 

  • Duffy MJ, Maguire TM, McDermott EW et al (1999) Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71(2):130–135

    Article  Google Scholar 

  • Dyson J, Webb G (2000a) A nonlinear age and maturity structured model of population dynamics i. Basic theory. J Math Anal Appl 242:93–104

    Article  MathSciNet  MATH  Google Scholar 

  • Dyson J, Webb G (2000b) A nonlinear age and maturity structured model of population dynamics ii. Chaos. J Math Anal Appl 242:255–270

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis V, Danø K (1993) Potentiation of plasminogen activation by an anti-urokinase monoclonal antibody due to ternary complex formation. A mechanistic model for receptor-mediated plasminogen activation. J Biol Chem 268(7):4806–13

    Google Scholar 

  • Fitzgibbon W, Parrott M, Webb G (1995) Diffusion epidemic models with incubation and crisscross dynamics. Math Biosci 128(1–2):131–155. https://doi.org/10.1016/0025-5564(94)00070-G

    Article  MathSciNet  MATH  Google Scholar 

  • Galle J, Hoffmann M, Aust G (2009) From single cells to tissue architecture—a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J Math Biol 58(1–2):261–283

    Article  MathSciNet  MATH  Google Scholar 

  • Garroni MG, Langlais M (1982) Age-dependent population diffusion with external constraint. J Math Biol 14(1):77–94. https://doi.org/10.1007/BF02154754

    Article  MathSciNet  MATH  Google Scholar 

  • Gatenby RA, Gawlinski ET (1996) A reaction–diffusion model of cancer invasion. Cancer Res 56(24):5745–5753

    Google Scholar 

  • Gerisch A, Chaplain M (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684–704

    Article  MathSciNet  Google Scholar 

  • Godár S, Hořejší V, Weidle UH et al (1999) M6P/IGFII-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-\(\beta \)1. Eur J Immunol 29(3):1004–1013

    Article  Google Scholar 

  • Gurtin M, MacCamy R (1981) Diffusion models for age-structured populations. Math Biosci 54(1–2):49–59. https://doi.org/10.1016/0025-5564(81)90075-4

    Article  MathSciNet  MATH  Google Scholar 

  • Gyilenberg M, Webb GF (1990) A nonlinear structured population model of tumor growth with quiescence. J Math Biol 28:671–694

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg M (1982) Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures. Math Biosci 62(1):45–74. https://doi.org/10.1016/0025-5564(82)90062-1

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg M (1986) The size and scar distributions of the yeast saccharomyces cerevisiae. J Math Biol 24(1):81–101. https://doi.org/10.1007/BF00275722

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg M, Webb G (1987) Age-size structure in populations with quiescence. Math Biosci 86(1):67–95. https://doi.org/10.1016/0025-5564(87)90064-2

    Article  MathSciNet  MATH  Google Scholar 

  • Hanahan D, Weinberg RA (2011) The hallmarks of cancer: the next generation. Cell 144:646–674

    Article  Google Scholar 

  • Hsieh YH (1991) Altruistic population model with sex differences. In: Arnino O, Axelrod DE, Kimmel M (eds) Mathematical population dynamics. Lecture notes in pure and applied mathematics, vol 131. Marcel Dekker Inc, New York

    Google Scholar 

  • Huai Q, Mazar AP, Kuo A, Parry GC et al (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science (New York, N.Y.) 311(5761):656–659

    Article  Google Scholar 

  • Huang C (1994) An age-dependent population model with nonlinear diffusion in \(\mathbf{R}^n\). Q Appl Math 52:377–398

    Article  Google Scholar 

  • Huyer W (1994) A size-structured population-model with dispersion. J Math Anal Appl 181(3):716–754. https://doi.org/10.1006/jmaa.1994.1054

    Article  MathSciNet  MATH  Google Scholar 

  • Khanna M, Wang F, Jo I et al (2011) Targeting multiple conformations leads to small molecule inhibitors of the uPAR\(\cdot \)uPA protein-protein interaction that block cancer cell invasion. ACS Chem Biol 9(11):1232–1243. https://doi.org/10.1021/cb200180m

  • Kimmel M, Darzynkiewicz Z, Arino O, Traganos F (1984) Analysis of a cell cycle model based on unequal division of metabolic constituents to daughter cells during cytokinesis. J Theor Biol 110:637–664

    Article  Google Scholar 

  • Kondraganti S, Gondi CS, McCutcheon I et al (2006) RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth. Int J Oncol 28(6):1353–1360

    Google Scholar 

  • Kunisch K, Schappacher W, Webb G (1985) Nonlinear age-dependent population dynamics with random diffusion. Comput Math Appl 11(1–3):155–173

    Article  MathSciNet  MATH  Google Scholar 

  • Langlais M (1988) Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion. J Math Biol 26(3):319–346. https://doi.org/10.1007/BF00277394

    Article  MathSciNet  MATH  Google Scholar 

  • Langlais M, Milner FA (2003) Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics. J Math Anal Appl 279(2):463–474. https://doi.org/10.1016/S0022-247X(03)00020-9

    Article  MathSciNet  MATH  Google Scholar 

  • Leksa V, Godar S, Cebecauer M et al (2002) The N terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J Biol Chem 277(43):40575–40582

    Article  Google Scholar 

  • Li Y, Cozzi P (2007) Targeting uPA/uPAR in prostate cancer. Cancer Treat Rev 33(6):521–527

    Article  Google Scholar 

  • Liang X, Yang X, Tang Y et al (2008) RNAi-mediated downregulation of urokinase plasminogen activator receptor inhibits proliferation, adhesion, migration and invasion in oral cancer cells. Oral Oncol 44(12):1172–1180

    Article  Google Scholar 

  • Liu D, Ghiso JA, Estrada Y et al (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1(5):445–457

    Article  Google Scholar 

  • Lorz A, Lorenzi T, Hochberg ME, Clairambault J, Perthame B (2013) Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM Math Model Numer Anal 47:377–399. https://doi.org/10.1051/m2an/2012031

    Article  MathSciNet  MATH  Google Scholar 

  • MacCamy R (1981) A population model with nonlinear diffusion. J Differ Equ 39(1):52–72. https://doi.org/10.1016/0022-0396(81)90083-8

    Article  MathSciNet  MATH  Google Scholar 

  • Madsen DH, Engelholm LH, Ingvarsen S et al (2007) Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J Biol Chem 282(37):27037–27045

    Article  Google Scholar 

  • Magal P, Ruan S (eds) (2008) Structured population models in biology and epidemiology. Springer, Berlin

    MATH  Google Scholar 

  • Meinzer H, Sandblad B (1985) A simulation model for studies of intestine cell dynamics. Comput Methods Progr Biomed 21(2):89–98

    Article  Google Scholar 

  • Metz JAJ, Diekmann O (1986) A gentle introduction to structured population models: three worked examples. In: Lecture notes in biomathematics, vol 68, chap. The dynamics of physiologically structured populations, pp 3–45. Springer, Berlin

  • Murray JD, Oster GF (1984) Cell traction models for generating pattern and form in morphogenesis. J Math Biol 19(3):265–279

    Article  MathSciNet  MATH  Google Scholar 

  • Peng PL, Hsieh YS, Wang CJ et al (2006) Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol 214(1):8–15

    Article  Google Scholar 

  • Peng L, Trucu D, Lin P et al (2017) A multiscale mathematical model of tumour invasive growth. Bull Math Biol 79:389–429. https://doi.org/10.1007/s11538-016-0237-2

    Article  MathSciNet  MATH  Google Scholar 

  • Persson M, Madsen J, Østergaard S et al (2012) 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers. Nucl Med Biol 39(4):560–569

    Article  Google Scholar 

  • Perthame B (2007) Transport equations in biology. Birkhauser Verlag, Basel

  • Prigogine I, Lefever R (1980) Stability problems in cancer growth and nucleation. Comp Biochem Physiol Part B Comp Biochem 67(3):389–393

    Article  Google Scholar 

  • Rhandi A (1998) Positivity and stability for a population equation with diffusion on \(l^1\). Positivity 2(2):101–113. https://doi.org/10.1023/A:1009721915101

    Article  MathSciNet  MATH  Google Scholar 

  • Rijken DC (1995) 2 Plasminogen activators and plasminogen activator inhibitors: biochemical aspects. Bailliere’s Clin Haematol 8(2):291–312

    Article  Google Scholar 

  • Sinko JW, Streifer W (1967) A new model for age-size structure of a population. Ecology 48(6):910–918. https://doi.org/10.2307/1934533

    Article  Google Scholar 

  • Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11(1):23–36

    Article  Google Scholar 

  • So JWH, Wu J, Zou X (2001) A reaction–diffusion model for a single species with age structure. I travelling wavefronts on unbounded domains. Proc R Soc Lond Ser A Math Phys Eng Sci 457(2012):1841–1853. https://doi.org/10.1098/rspa.2001.0789

    Article  MathSciNet  MATH  Google Scholar 

  • Stillfried GE, Saunders DN, Ranson M et al (2007) Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity. Breast Cancer Res 9(1):R14

    Article  Google Scholar 

  • Sugioka K, Kodama A, Okada K et al (2013) TGF-\(\beta \)2 promotes RPE cell invasion into a collagen gel by mediating urokinase-type plasminogen activator (uPA) expression. Exp Eye Res 115:13–21

    Article  Google Scholar 

  • Trucco E (1965a) Mathematical models for cellular systems the von foerster equation. Part i. Bull Math Biophys 27(3):285–304. https://doi.org/10.1007/BF02478406

    Article  Google Scholar 

  • Trucco E (1965b) Mathematical models for cellular systems. The von foerster equation. Part ii. Bull Math Biophys 27(4):449–471. https://doi.org/10.1007/BF02476849

    Article  Google Scholar 

  • Trucu D, Lin P, Chaplain MAJ, Wang Y (2013) A multiscale moving boundary model arising in cancer invasion. Multiscale Model Simul 11(1):309–335

    Article  MathSciNet  MATH  Google Scholar 

  • Trucu D, Domschke P, Gerisch A, Chaplain MAJ (2017) Multiscale computational modelling and analysis of cancer invasion. In: Springer lecture notes in mathematics, CIME foundation subseries, vol 2167, pp 275–310. Springer

  • Tucker SL, Zimmerman SO (1988) A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J Appl Math 48(3):549–591. URL http://www.jstor.org/stable/2101595

  • Waltz DA, Chapman HA (1994) Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 269(20):14,746–50

    Google Scholar 

  • Waltz DA, Natkin LR, Fujita RM et al (1997) Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Investig 100(1):58–67

    Article  Google Scholar 

  • Wei Y, Waltz DA, Rao N et al (1994) Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269(51):32,380–8

    Google Scholar 

  • Yamaguchi N, Mizutani T, Kawabata K, Haga H (2015) Leader cells regulate collective cell migration via rac activation in the downstream signaling of integrin \(\beta 1\) and pi3k. Sci Rep 5(7656):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Trucu.

Parameter Set

Parameter Set

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodgkinson, A., Chaplain, M.A.J., Domschke, P. et al. Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model. Bull Math Biol 80, 701–737 (2018). https://doi.org/10.1007/s11538-018-0396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0396-4

Keywords

Mathematics Subject Classification

Navigation