Skip to main content
Log in

A structured-population model of Proteus mirabilis swarm-colony development

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we present continuous age- and space-structured models and numerical computations of Proteus mirabilis swarm-colony development. We base the mathematical representation of the cell-cycle dynamics of Proteus mirabilis on those developed by Esipov and Shapiro, which are the best understood aspects of the system, and we make minimum assumptions about less-understood mechanisms, such as precise forms of the spatial diffusion. The models in this paper have explicit age-structure and, when solved numerically, display both the temporal and spatial regularity seen in experiments, whereas the Esipov and Shapiro model, when solved accurately, shows only the temporal regularity.

The composite hyperbolic-parabolic partial differential equations used to model Proteus mirabilis swarm-colony development are relevant to other biological systems where the spatial dynamics depend on local physiological structure. We use computational methods designed for such systems, with known convergence properties, to obtain the numerical results presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G.: The role of diffusion in mathematical population biology: Skellam revisited. In: Mathematics in Biology and Medicine, V. Capasso, E. Grosso, S.L. Paveri-Fontana, (eds.), vol. 57 of Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1985, pp. 2–6

  2. Ayati, B.P.: A variable time step method for an age-dependent population model with nonlinear diffusion. SIAM J. Numer. Anal. 37, 1571–1589 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ayati, B.P., Dupont, T.F.: Galerkin methods in age and space for a population model with nonlinear diffusion. SIAM J. Numer. Anal. 40, 1064–1076 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ayati, B.P., Dupont, T.F.: Convergence of a step-doubling Galerkin method for parabolic problems. Math. Comp. 74, 1053–1065 (2005) Article electronically published on September 10, 2004

    Article  MATH  MathSciNet  Google Scholar 

  5. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Model. 32, 413–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertuzzi, A., Gandolfi, A.: Cell kinetics in a tumor cord. J. Theor. Biol. 204, 587–599 (2000)

    Article  Google Scholar 

  7. Bolker, B.M., Pacala, S.W., Neuhauser, C.: Spatial dynamics in model plant communities: What do we really know? American Naturalist 162, 135–148 (2003)

    Google Scholar 

  8. Busenberg, S., Iannelli, M.: A class of nonlinear diffusion problems in age-dependent population dynamics. Nonlin. Anal. Th. Meth. Appl. 7, 501–529 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chiu, C.: A numerical method for nonlinear age dependent population models. Diff. Int. Eqns. 3, 767–782 (1990)

    MATH  MathSciNet  Google Scholar 

  10. de Roos, A.M.: Numerical methods for structured population models: The escalator boxcar train. Num. Meth. Part. Diff. Eqns. 4, 173–195 (1989)

    Article  Google Scholar 

  11. de Roos, A.M.: A gentle introduction to physiologically structured population models. In: Structured-population Models in Marine, Terrestrial, and Freshwater Systems, S. Tuljapurkar, H. Caswell, (eds.), vol. 18 of Population and Community Biology Series, Chapman & Hall, New York, 1997, ch. 5, pp. 119–204

  12. de Roos, A.M., Metz, J.A.J.: Towards a numerical analysis of the escalator boxcar train. In: Differential Equations with Applications in Biology, Physics and Engineering, J.A. Goldstein, F. Kappel, W. Schappacher, (eds.), vol. 133 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1991, pp. 91–113

  13. di Blasio, G.: Non-linear age-dependent population diffusion. J. Math. Bio. 8, 265–284 (1979)

    MATH  Google Scholar 

  14. di Blasio, G., Lamberti, L.: An initial-boundary problem for age-dependent population diffusion. SIAM J. Appl. Math. 35, 593–615 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dyson, J., Villella-Bressan, R., Webb, G.F.: Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math. Biosci. 177–178, 73–83 (2002)

    Google Scholar 

  16. Esipov, S.E., Shapiro, J.A.: Kinetic model of proteus mirabilis swarm colony development. J. Math. Biol. 36, 249–268 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fairweather, G., López-Marcos, J.C.: A box method for a nonlinear equation of population dynamics. IMA J. Numer. Anal. 11, 525–538 (1991)

    MATH  MathSciNet  Google Scholar 

  18. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice–Hall, New Jersey, 1971

  19. Gurtin, M.E.: A system of equations for age-dependent population diffusion. J. Theor. Biol. 40, 389–392 (1973)

    Article  Google Scholar 

  20. Gurtin, M.E., MacCamy, R.C.: Non-linear age-dependent population dynamics. Arch. Rat. Mech. Anal. 54, 281–300 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gurtin, M.E., MacCamy, R.C.: Diffusion models for age-structured populations. Math. Biosci. 54, 49–59 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Höfer, T., Sherratt, J.A., Maini, P.K.: Cellular pattern formation during Dictostelium aggregation. Physica D 85, 425–444 (1995)

    Article  MATH  Google Scholar 

  23. Huang, C.: An age-dependent population model with nonlinear diffusion in ℝn. Quart. Appl. Math. 52, 377–398 (1994)

    MATH  MathSciNet  Google Scholar 

  24. Ionides, E.L., Fang, K.S., Isseroff, R.R., Oster, G.F.: Stochastic models for cell motion and taxis. J. Math. Biol. 48, 23–37 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kim, M.-Y.: Galerkin methods for a model of population dynamics with nonlinear diffusion. Num. Meth. Part. Diff. Eqns. 12, 59–73 (1996)

    Article  MATH  Google Scholar 

  26. Kim, M.-Y., Park, E.-J.: Mixed approximation of a population diffusion equation. Computers Math. Applic. 30, 23–33 (1995)

    Article  MATH  Google Scholar 

  27. Kohyama, T.: Size-structured multi-species model of rain forest trees. Functional Ecology 6, 206–212 (1992)

    Google Scholar 

  28. Kohyama, T.: Size-structured tree populations in gap-dynamic forest – the forest architecture hypothesis for the stable coexistence of species. J. Ecology 81, 131–143 (1993)

    Google Scholar 

  29. Kooi, B.W. Kooijman, S.A.L.M.: Discrete event versus continuous approach to reproduction in structured population dynamics. Theor. Popul. Biol. 56, 91–105 (1999)

    Article  MATH  Google Scholar 

  30. Kraemer, M.A., Kalachev, L.V., Coble, D.W.: A class of models describing age structure dynamics in a natural forest. Natural Resource Modeling 15, 149–200 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kubo, K., Langlais, M.: Periodic solutions for a population dynamics problem with age-dependence and spatial structure. J. Math. Biol. 29, 363–378 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kwon, Y., Cho, C.-K.: Second-order accurate difference methods for a one-sex model of population dynamics. SIAM J. Numer. Anal. 30, 1385–1399 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Langlais, M.: A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal. 16, 510–529 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Langlais, M.: Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion. J. Math. Biol. 26, 319–346 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lopez, L., Trigiante, D.: A finite difference scheme for a stiff problem arising in the numerical solution of a population dynamic model with spatial diffusion. Nonlin. Anal. Th. Meth. Appl. 9, 1–12 (1985)

    Article  MATH  Google Scholar 

  36. López-Marcos, J.C.: An upwind scheme for a nonlinear hyperbolic integro-differential equation with integral boundary condition. Computers Math. Applic. 22, 15–28 (1991)

    Article  MATH  Google Scholar 

  37. MacCamy, R.C.: A population model with nonlinear diffusion. J. Diff. Eqns. 39, 52–72 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  38. Marcati, P.: Asymptotic behavior in age-dependent population dynamics with hereditary renewal law. SIAM J. Math. Anal. 12, 904–916 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  39. Medvedev, G.S., Kaper, T.J., Kopell, N.: A reaction-diffusion equation with periodic front dynamics. SIAM J. Appl. Math. 60, 1601–1638 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications, vol. 18 of Interdisciplinary Applied Mathematics, Springer–Verlag, Berlin, third ed., 2003

  41. Nagylaki, T.: The diffusion model for migration and selection. In: Some Mathematical Questions in Biology: Models in Population Biology, A. Hastings, (ed.), vol. 20 of Lectures on Mathematics in the Life Sciences, American Mathematical Society, Providence, R.I., 1989, pp. 55–75

  42. Pascual, M., Levin, S.A.: Spatial scaling in a benthic population model with density-dependent disturbance. Theor. Popul. Biol. 56, 106–122 (1999)

    Article  MATH  Google Scholar 

  43. Preziosi, L. ed.: Cancer Modelling and Simulation. Chapman & Hall/CRC, 2003

  44. Rauprich, O., Matsushita, M., Weijer, K., Siegert, F., Esipov, S.E., Shapiro, J.A.: Periodic phenomena in Proteus mirabilis swarm colony development. J. Bacteriol. 178, 6525–6538 (1996)

    Google Scholar 

  45. Rotenberg, M.: Theory of population transport. J. Theor. Biol. 37, 291–305 (1972)

    Article  Google Scholar 

  46. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  47. Sulsky, D.: Numerical solution of structured population models, I. age structure. J. Math. Biol. 31, 817–839 (1993)

    MATH  MathSciNet  Google Scholar 

  48. Webb, G.F.: Theory of Nonlinear Age–dependent Population Dynamics. vol. 89 of Pure and Applied Mathematics, Marcel Dekker, New York, 1985

  49. Williams, F.D., Schwarzhoff, R.H.: Nature of the swarming phenomenon in Proteus. Ann. Rev. Microbiol. 32, 101–122 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce P. Ayati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayati, B. A structured-population model of Proteus mirabilis swarm-colony development. J. Math. Biol. 52, 93–114 (2006). https://doi.org/10.1007/s00285-005-0345-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0345-3

Mathematics Subject Classification (2000)

Keywords or phrases

Navigation