Skip to main content
Log in

A Mathematical Model of Granulopoiesis Incorporating the Negative Feedback Dynamics and Kinetics of G-CSF/Neutrophil Binding and Internalization

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

A Commentary to this article was published on 26 October 2016

Abstract

We develop a physiological model of granulopoiesis which includes explicit modelling of the kinetics of the cytokine granulocyte colony-stimulating factor (G-CSF) incorporating both the freely circulating concentration and the concentration of the cytokine bound to mature neutrophils. G-CSF concentrations are used to directly regulate neutrophil production, with the rate of differentiation of stem cells to neutrophil precursors, the effective proliferation rate in mitosis, the maturation time, and the release rate from the mature marrow reservoir into circulation all dependent on the level of G-CSF in the system. The dependence of the maturation time on the cytokine concentration introduces a state-dependent delay into our differential equation model, and we show how this is derived from an age-structured partial differential equation model of the mitosis and maturation and also detail the derivation of the rest of our model. The model and its estimated parameters are shown to successfully predict the neutrophil and G-CSF responses to a variety of treatment scenarios, including the combined administration of chemotherapy and exogenous G-CSF. This concomitant treatment was reproduced without any additional fitting to characterize drug–drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baiocci G, Scambia G, Benedetti P, Menichella G, Testa U, Pierelli L, Martucci R, Foddai ML, Bizzi B, Mancuso S, Peschle C (1993) Autologous stem cell transplantation: sequential production of hematopoietic cytokines underlying granulocyte recovery. Cancer Res 53:1297–1303

    Google Scholar 

  • Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28(5):509–554

    Article  Google Scholar 

  • Basu S, Hodgson G, Katz M, Dunn AR (2002) Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood 100:854–861

    Article  Google Scholar 

  • Bernard S, Bélair J, Mackey MC (2003) Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J Theor Biol 223:283–298

    Article  MathSciNet  Google Scholar 

  • Brooks G, Langlois GP, Lei J, Mackey MC (2012) Neutrophil dynamics after chemotherapy and G-CSF: the role of pharmacokinetics in shaping the response. J Theor Biol 315:97–109

    Article  MathSciNet  Google Scholar 

  • Bugl S, Wirths S, Müller MR, Radsak MP (2012) Current insights into neutrophil homeostasis. Ann N Y Acad Sci 1266:171–178

    Article  Google Scholar 

  • Cairo MS, Suen Y, Sender L, Gillan ER, Ho W, Plunkett JM, van de Ven C (1992) Circulating granulocyte colony-stimulating factor (G-CSF) levels after allogenic and autologous bone marrow transplantation: endogenous G-CSF production correlates with myeloid engraftment. Blood 79:1869–1873

    Google Scholar 

  • Colijn C, Mackey MC (2005a) A mathematical model of hematopoiesis: I. Periodic chronic mylogenous leukemia. J Theor Biol 237:117–132

    Article  MathSciNet  Google Scholar 

  • Colijn C, Mackey MC (2005b) A mathematical model of hematopoiesis: II. Cyclical neutropenia. J Theor Biol 237:133–146

    Article  MathSciNet  Google Scholar 

  • Craig M, González-Sales M, Li J, Nekka F (2016) Impact of pharmacokinetic variability on a mechanistic physiological pharmacokinetic/pharmacodynamic model: a case study of neutrophil development, PM00104, and filgrastim. In: Toni B (ed) Mathematical sciences with multidisciplinary applications, Springer Proceedings in Mathematics and Statistics. Springer Science + Business Media, New York, ISBN 978-3-319-31323-8

  • Craig M, Humphries AR, Bélair J, Li J, Nekka F, Mackey MC (2015) Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: mathematical modelling guides dose optimisation to minimise neutropenia. J Theor Biol 385:77–89

    Article  MATH  Google Scholar 

  • Dale DC, Mackey MC (2015) Understanding, treating and avoiding hematological disease: better medicine through mathematics? Bull Math Biol 77:739–757

    Article  MathSciNet  MATH  Google Scholar 

  • Dale DC, Welte K (2011) Hematopoietic growth factors in oncology. Springer, Heidelberg

    Google Scholar 

  • Dancey JT, Deubelbeiss KA, Harker LA, Finch CA (1976) Neutrophil kinetics in man. J Clin Investig 58:705–715

    Article  Google Scholar 

  • DiPiro JT, Spruill WJ, Wade WE, Blouin RA, Pruemer JM (eds) (2010) Concepts in clinical pharmacokinetics, vol 5. American Society of Health-System Pharmacists, Bethesda

    Google Scholar 

  • Durand C, Charbord P (2010) Stem cell biology and regenerative medicine, vol 3. River Publishers, Aalborg

    Google Scholar 

  • Endele M, Etzrodt M, Schroeder T (2014) Instruction of hematopoietic lineage choice by cytokine signaling. Exp Cell Res 329:207–213

    Article  Google Scholar 

  • Foley C, Bernard S, Mackey MC (2006) Cost-effective G-CSF therapy strategies for cyclical neutropenia: mathematical modelling based hypotheses. J Theor Biol 238:756–763

    Article  MathSciNet  Google Scholar 

  • Foley C, Mackey MC (2009a) Dynamic hematological disease: review. J Math Biol 58:285–322

    Article  MathSciNet  MATH  Google Scholar 

  • Foley C, Mackey MC (2009b) Mathematical model for G-CSF administration after chemotherapy. J Theor Biol 257:27–44

    Article  MathSciNet  Google Scholar 

  • Friberg LE, Karlsson MO (2003) Mechanistic models for myelosuppression. Invest New Drugs 21:183–194

    Article  Google Scholar 

  • González-Sales M, Valenzuela B, Pérez-Ruixo C, Fernández Teruel C, Miguel-Lillo B, Soto Matos A et al (2012) Population pharmacokinetic-pharmacodynamic analysis of neutropenia in cancer patients receiving PM00104 (Zalypsis\(\textregistered \) ). Clin Pharmacokinet 51:751–764

    Article  Google Scholar 

  • Greeenbaum AM, Link DC (2011) Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 25:211–217

    Article  Google Scholar 

  • Hammond WP, Csiba E, Canin A, Hockman H, Souza LM, Layton JE, Dale DC (1991) Chronic neutropenia. A new canine model induced by human granulocyte colony-stimulating factor. J Clin Investig 87(2):704–710

    Article  Google Scholar 

  • Hearn T, Haurie C, Mackey MC (1998) Cyclical neutropenia and the peripherial control of white blood cell production. J Theor Biol 192:167–181

    Article  Google Scholar 

  • Kawakami M, Tsutsumi H, Kumakawa T, Abe H, Hirai M, Kurosawa S, Mori M, Fukushima M (1990) Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76(10):1962–1964

    Google Scholar 

  • Kazarinoff ND, van den Driessche P (1979) Control of oscillations in hematopoiesis. Science 203:1348–1350

    Article  MathSciNet  MATH  Google Scholar 

  • King-Smith EA, Morley A (1970) Computer simulation of granulopoiesis: normal and impaired granulopoiesis. Blood 36:254–262

    Google Scholar 

  • Krinner A, Roeder I, Loeffler M, Scholz M (2013) Merging concepts—coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC Syst Biol 7:117

    Article  Google Scholar 

  • Krzyzanski W, Wiczling P, Lowe P, Pigeolet E, Fink M, Berghout A, Balser S (2010) Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations. J Clin Pharmacol 9(Suppl):101S–112S

    Article  Google Scholar 

  • Kuwabara T, Kato Y, Kobayashi S, Suzuki H, Sugiyama Y (1994) Nonlinear pharmacokinetics of a recombinant human granulocyte colony-stimulating factor derivative (Nartograstim): species differences among rats, monkeys and humans. J Pharmacol Exp Ther 271:1535–1543

    Google Scholar 

  • Layton JE, Hall NE (2006) The interaction of G-CSF with its receptor. Front Biosci 31:177–199

    Google Scholar 

  • Lei J, Mackey MC (2011) Multistability in an age-structured model of hematopoiesis: cyclical neutropenia. J Theor Biol 270:143–153

    Article  MathSciNet  MATH  Google Scholar 

  • Lui G, Yang H, Wang X, Chu Y (2013) Modulation of neutrophil development and homeostasis. Curr Mol Med 13:1270–1283

    Article  Google Scholar 

  • Mackey MC (2001) Cell kinetic status of hematopoietic stem cells. Cell Prolif 34:71–83

    Article  Google Scholar 

  • Mackey MC, Aprikyan AAG, Dale DC (2003) The rate of apoptosis in post mitotic neutrophil precursors of normal and neutropenic humans. Cell Prolif 36:27–34

    Article  Google Scholar 

  • Maholtra V, Perry MC (2003) Models of anti-cancer therapy. Classical chemotherapy: mechanism, toxicities, and the therapeutic window. Cancer Biol Ther 2:S2–S4

    Article  Google Scholar 

  • Mathworks (2015) MATLAB 2015a. Mathworks, Natick

  • Molineux G (2011) Granulocyte colony-stimulating factors. In: Lyman GH, Dale DC (eds) Hematopoietic growth factors in oncology. Springer Science + Business Media, New York

    Google Scholar 

  • Molineux G, Arvedson T, Foote M (2012) Twenty years of G-CSF clinical and nonclinical discoveries. Springer Basel AG, Basel

    Book  Google Scholar 

  • Pérez-Ruixo C, Valenzuela B, Fernández Teruel C, González-Sales M, Miguel-Lillo B, Soto-Matos A et al (2012) Population pharmacokinetics of PM00104 (Zalypsis\(\textregistered \)) in cancer patients. Cancer Chemother Pharmacol 69:15–24

    Article  Google Scholar 

  • Pfreundschuh M, Trümper L, Kloess M, Schmits R, Feller AC, Rudolph C et al (2004a) Two-weekly or 3-weekly chop chemotherapy with our without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 104:634–641

    Article  Google Scholar 

  • Pfreundschuh M, Trümper L, Kloess M, Schmits R, Feller AC, Rudolph C et al (2004b) Two-weekly or 3-weekly chop chemotherapy with our without etoposide for the treatment of young patients with good prognosis (normal LDH) aggressive lymphomas: results of the NHL-B1 trial of the DSHNHL. Blood 104:626–633

    Article  Google Scholar 

  • Price TH, Chatta GS, Dale DC (1996) Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88:335–340

    Google Scholar 

  • Pujo-Menjouet L, Bernard S, Mackey MC (2005) Long period oscillations in a G\(_0\) model of hematopoietic stem cells. SIAM J Appl Dyn Syst 4:312–332

    Article  MathSciNet  MATH  Google Scholar 

  • Quartino AL, Friberg LE, Karlsson MO (2012) A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanisitic myelosuppression model. Invest New Drugs 30:833–845

    Article  Google Scholar 

  • Rankin SM (2010) The bone marrow: a site of neutrophil clearance. J Leukoc Biol 88:241–251

    Article  Google Scholar 

  • Riether C, Schürch CM, Ochsenbein AF (2015) Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ 22:187–198

    Article  Google Scholar 

  • Rubinow S, Lebowitz J (1975) A mathematical model of neutrophil production and control in normal man. J Math Biol 1:187–225

    Article  MathSciNet  MATH  Google Scholar 

  • Ryan DH (2016) Examination of blood cells. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, Caligiuri M (eds) Williams Hematology, vol 9. McGraw-Hill Companies Inc., New York

    Google Scholar 

  • Santillán M (2008) On the use of the Hill functions in mathematical models of gene regulatory networks. Math Model Nat Phenom 3:85–97

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkar CA, Lowenhaupt K, Wang PJ, Horan T, Lauffenburger DA (2003) Parsing the effects of binding, signaling, and trafficking on the mitogenic potencies of granulocyte colony-stimulating factor analogues. Biotechnol Prog 19:955–964

    Article  Google Scholar 

  • Schirm S, Engel C, Loeffler M, Scholz M (1996) Modelling chemotherapy effects on granulopoiesis. Br J Haematol 95:616–625

    Article  Google Scholar 

  • Schmitz S (1988) Ein mathematisches Modell der zyklischen Haemopoese. PhD thesis, Universitat Koln

  • Schmitz S, Franke H, Loeffler M, Wichmann HE, Diehl V (2014) Model analysis of the contrasting effects of GM-CSF and G-CSF treatment on peripheral blood neutrophils observed in three patients with childhood-onset cyclic neutropenia. BMC Syst Biol 8:1–18

    Article  Google Scholar 

  • Schmitz S, Loeffler M, Jones JB, Lange RD, Wichmann HE (1990) Synchrony of bone marrow proliferation and maturation as the origin of cyclic haemopoiesis. Cell Tissue Kinet 23:425–441

    Google Scholar 

  • Scholz M, Engel C, Loeffler M (2005) Modelling human granulopoiesis under polychemotherapy with G-CSF support. J Math Biol 50:397–439

    Article  MathSciNet  MATH  Google Scholar 

  • Scholz M, Schirm S, Wetzler M, Engel C, Loeffler M (2012) Pharmacokinetic and -dynamic modelling of G-CSF derivatives in humans. Theor Biol Med Model 9:1497–1502

    Article  Google Scholar 

  • Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC (2002) G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17:413–423

    Article  Google Scholar 

  • Shochat E, Rom-Kedar V, Segel LA (2007) G-CSF control of neutrophils dynamics in the blood. Bull Math Biol 69:2299–2338

    Article  MathSciNet  MATH  Google Scholar 

  • Shvitra D, Laugalys R, Kolesov YS (1983) Mathematical modeling of the production of white blood cells. In: Marchuk G, Belykh LN (eds) Mathematical modeling in immunology and medicine. North-Holland, Amsterdam, pp 211–223

    Google Scholar 

  • Smith CW (2016) Production, distribution, and fate of neutrophils. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, Caligiuri M (eds) Williams hematology, vol 9. McGraw-Hill Companies Inc., New York

    Google Scholar 

  • Spiekermann K, Roesler J, Emmendoerffer A, Elsner J, Welte K (1997) Functional features of neutrophils induced by G-CSF and GM-CSF treatment: differential effects and clinical implications. Leukemia 11:466–478

    Article  Google Scholar 

  • Terashi K, Oka M, Ohdo S, Furukubo T, Ikeda C, Fukuda M, Soda H, Higuchi S, Kohno S (1999) Close association between clearance of recombinant human granulocyte colony-stimulating factor (G-CSF) and G-CSF receptor on neutrophils in cancer patients. Antimicrob Agents Chemother 43:21–24

    Article  Google Scholar 

  • Vainas O, Ariad S, Amir O, Mermershtain W, Vainstein V, Kleiman M, Inbar O, Ben-Av R, Mukherjee A, Chan S, Agur Z (2012) Personalising docetaxel and G-CSF schedules in cancer patients by a clinically validated computational model. Br J Cancer 107:814–822

    Article  Google Scholar 

  • Vainstein V, Ginosar Y, Shoham M, Ranmar DO, Ianovski A, Agur Z (2005) The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically-based mathematical model. J Theor Biol 235:311–327

    Article  MathSciNet  Google Scholar 

  • van der Graaf P, Benson N (2011) Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm Res 28:1460–1464

    Article  Google Scholar 

  • von Schulthess GK, Mazer NA (1982) Cyclic neutropenia (CN): a clue to the control of granulopoiesis. Blood 59:27–37

    Google Scholar 

  • Wang B, Ludden TM, Cheung EN, Schwab GG, Roskos LK (2001) Population pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J Pharmacokinet Pharmacodyn 28:321–342

    Article  Google Scholar 

  • Ward AC, Monkhouse JL, Csar XF, Touw IP, Bello PB (1998) The Src-like tyrosine kinase Hck is activated by granulocyte colony-stimulating factor (G-CSF) and docks to the activated G-CSF receptor. Biochem Biophys Res Commun 251(1):117–123

    Article  Google Scholar 

  • Watari K, Asano S, Shirafuji N, Kodo H, Ozawa K, Takaku F, Kamachi S (1989) Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73(1):117–122

    Google Scholar 

  • Wichmann HE, Loffler M (1988) Mathematical modeling of cell proliferation: stem cell regulation in hemopoiesis. CRC Press, Boca Raton

    Google Scholar 

  • Wu X, Nekka F, Li J Steady-state volume of distribution of two compartmental models with simultaneous linear and saturated eliminations. Under review

Download references

Acknowledgments

A.R.H. and M.C.M. are grateful to the National Science and Engineering Research Council (NSERC), Canada, for funding through the Discovery Grant program. M.C. wishes to thank NSERC for funding from the PGS-D program. We are grateful to Fahima Nekka, Jun Li, Jacques Bélair, and David Dale for their insight and support. We would also like to thank both anonymous reviewers for their helpful and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Craig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, M., Humphries, A.R. & Mackey, M.C. A Mathematical Model of Granulopoiesis Incorporating the Negative Feedback Dynamics and Kinetics of G-CSF/Neutrophil Binding and Internalization. Bull Math Biol 78, 2304–2357 (2016). https://doi.org/10.1007/s11538-016-0179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0179-8

Keywords

Navigation