Skip to main content

Advertisement

Log in

Modelling Human Granulopoiesis under Poly-chemotherapy with G-CSF Support

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

Cytotoxic drugs administered in polychemotherapy cause a characteristic neutropenic period depending on the schedule of the drugs, which can partly be prevented by G-CSF growth factor support. To quantify these effects and to gain a deeper insight into the dynamics of bone marrow recovery after such suppressing and stimulating disturbances, we construct a biomathematical compartment model of human granulopoiesis under polychemotherapy with G-CSF support. The underlying assumptions and mathematical techniques used to obtain the model are explained in detail. A large variety of biological and clinical data as well as knowledge from a model of murine haematopoiesis are evaluated to construct a physiological model for humans.

Particular emphasis is placed on estimating the influence of chemotherapeutic drugs on the granulopoietic system. As a result, we present an innovative method to estimate the bone marrow damage caused by cytotoxic drugs with respect to single identifiable cell stages only on the basis of measured peripheral blood leukocyte dynamics. Conversely, our model can be used in a planning phase of a clinical trial to estimate the haematotoxicity of regimens based on new combinations of drugs already considered and with or without growth factor support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bishop, C.R., Athens, J.W., Boggs, D.R., Warner, G.E., Cartwright, G.E., Wintrobe, M.M.: A non-steady-state kinetic evaluation of the mechanism of cortisone-induced granulocytosis. J. Clin. Inv., 47, 249–260 (1968)

    Google Scholar 

  2. Busse, D., Busch, F.W., Bohnenstengel, F., Eichelbaum, M., Fischer, P., Opalinska, J., Schumacher, K., Schweizer, E., Kroemer, H.K.: Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J. Clin. Oncol. 15 (5), 1885–1896 (1997)

    Google Scholar 

  3. Borleffs, J.C.C., Bosschaert, M., Vrehen, H.M., Schneider, M.M.E., van Strijp, J., Small, M.K., Borkett, K.M.: Effect of Escalating Doses of Recombinant Human Granulocyte Colony-Stimulating Factor (Filgrastim) on Circulating Neutrophils in Healthy Subjects. Clinical Therapeutics 20 (4), 722–736 (1998)

    Article  Google Scholar 

  4. Bender, R.A., Castle, M.C., Margileth, D.A., Oliverio, V.T.: The pharmacokinetics of 3H-vincristine in man. Clin. Pharmacol. Ther. 22 (4), 430–435 (1977)

    Google Scholar 

  5. Blayney, D.W., LeBlanc, M.L., Grogan, T., Gaynor, E.R., Chapman, R.A., Spiridonidis, C.H., Taylor, S.A., Bearman, S.I., Miller, T.P., Fisher, R.I.: Dose-Intense Chemotherapy Every 2 Weeks With Dose-Intense Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone May Improve Survival in Intermediate- and High-Grade Lymphoma: A Phase II Study of the Southwest Oncology Group (SWOG 9349). J. Clin. Oncol. 21 (13), 2466–2473 (2003)

    Article  Google Scholar 

  6. Chatta, G.S., Price, T.H., Allen, R.C., Dale, D.C.: Effects of in vivo recombinant methionyl human granulocyte colony-stimulating factor on the neutrophil response and peripheral blood colony-forming cells in healthy young and elderly adult volunteers. Blood 84 (9), 2923–2929 (1994)

    Google Scholar 

  7. Colotta, I., Re, F., Polentarutti, N., Sozzani, S., Mantovani, A.: Modulation of granulocyle survival and programmed cell death by cytokines and bacterial products. Blood 80 (8), 2012–2020 (1992)

    Google Scholar 

  8. Dale,D.C., Fauci, A.S., Wolff, S.M.: Alternate-day prednisone. T. n. E. J. Med. 1154–1158 (1974)

  9. Engel, C.: Charakterisierung der zellkinetischen Wirkungen von G-CSF auf die Granulopoese, Erythropoese und Stammzellen in der Maus mit Hilfe eines mathematischen Kompartimentmodells. Dissertation, Köln 1999

  10. El Ouriaghli, F., Fujiwara, H., Melenhorst, J.J., Sconocchia, G., Hensel, N., Barett, A.J.: Neutrophil elastase enzymatically antagonizes the in vitro action of G-CSF: implications for the regulation of granulopoiesis. Blood 101 (5), 1752–1758 (2003)

    Article  Google Scholar 

  11. Ericson, S.G., Gao, H., Gericke, G.H., Lewis, L.D.: The role of polymorphonuclear neutrophils (PMNs) in clearance of granulocyte colony-stimulating factor (G-CSF) in vivo and in vitro. Exp. Hem. 25 (13), 1313–1325 (1997)

    Google Scholar 

  12. Engel, C., Loeffler, M., Schmitz, S., Tesch, H., Diehl, V.: Acute hematologic toxicity and practicability of dose-intensified BEACOPP chemotherapy for advanced stage Hodgkin’s disease. German Hodgkin’s Lymphoma Study Group (GHSG). Ann. Oncol. 11 (9), 1105–1114 (2000)

    Google Scholar 

  13. Engel C., Scholz, M., Loeffler, M.: A computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy. Blood prepublished June 29, 2004; DOI 10.1182/blood-2004-01-0306

  14. Fukuda, M., Oka, M., Ishida, Y., Kinoshita, H., Terashi, K., Kawabata, S., Kinoshita, A., Soda, H., Kohno, S.: Effects of renal function on pharmacokinetics of recombinant human granulocyte colony-stimulating factor in lung cancer patients. Antimicrob Agents Chemother 45 (7), 1947–1951 (2001)

    Article  Google Scholar 

  15. Ferguson, L.R., Pearson, A.E.: The clinical use of mutagenic anticancer drugs. Mutation Res. 355, 1–12 (1996)

    Google Scholar 

  16. Grigg, A.P., Roberts, A.W., Raunow, H., Houghton, S., Layton, J.E., Boyd, A.W., McGrath, K.M., Maher, D.: Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood 86 (12), 4437–4445 (1995)

    Google Scholar 

  17. Hunter, M.G., Druhan, L.J., Massullo, P.R., Avalos, B.R.: Proteolytic cleavage of granulocyte colony-stimulating factor and its receptor by neutrophil elastase induces growth inhibition and decreased cell surface expression of the granulocyte colony-stimulating factor receptor. Am. J. Hematol. 74 (3), 149–155 (2003)

    Article  Google Scholar 

  18. Hareng L., Hartung, T.: Induction and Regulation of Endogenous Granulocyte Colony-Stimulating Factor Formation. Biol. Chem. 383, 1501–1517 (2002)

    CAS  PubMed  Google Scholar 

  19. Hoglund, M., Smedmyr, B., Simonsson, B., Totterman, T., Bengtsson, M.: Dose-dependent mobilisation of hematopoietic progenitor cells in healthy volunteers receiving glycosylated rHuG-CSF. Bone marrow transplant 18 (1), 19–27 (1996)

    Google Scholar 

  20. Huhn, R.D., Yurkow, E.J., Tushinski, R., Clarke, L., Sturgill, M.G., Hoffmann, R., Sheay, W., Cody, R., Philipp, C., Resta, D., George, M.: Recombinant human interleukin-3 (rhIL-3) enhances the mobilization of peripheral blood progenitor cells by recombinant human granulocyte colony-stimulating factor (rhG-CSF) in normal volunteers. Exp. Hem. 24 (7), 839–847 (1996)

    Google Scholar 

  21. Lord, B.I., Bronchud, M.H., Owens, S., Chang, J., Howell, A., Souza, L., Dexter, M.: The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc. Nat. Acad. Sci. USA 86, Medical Sciences, 9499–9503 (1989)

  22. Loeffler, M., Pantel, H., Wulff, H., Wichmann, H.E.: A mathematical model of erythropoiesis in mice and rats Part 1: Structure of the model. Cell Tissue Kinet. 22, 13–30 (1989)

    Google Scholar 

  23. Lenhoff, S., Rosberg, B., Olofsson, T.: Granulocyte interactions with GM-CSF and G-CSF secretion by endothelial cells and monocytes. European Cytokine Network 10 (4), 525–532 (1999)

    Google Scholar 

  24. Lohrmann, H.-P., Schreml, W.: Cytotoxic Drugs and the Granulopoietic System. Springer Verlag, Berlin 1982

  25. Mackey, M.C., Aprikyan, A.A.G., Dale, D.C.: The rate of apoptosis in post mitotic neutrophil precursors of normal and neutropenic humans. Cell Prolif. 36, 27–34 (2003)

    Article  Google Scholar 

  26. Ostby, I., Rusten, L.S., Kvalheim, G., Grottum, P.: A mathematical model for reconstitution of granulopoiesis after high dose chemotherapy with autologous stem cell transplantation. J. Math. Biol. 47 (2), 101–136 (2003)

    Article  Google Scholar 

  27. Price T.H., Chatta, G.S., Dale, D.C.: Effect of Recombinant Granulocyte Colony-Stimulating Factor on Neutrophil Kinetics in Normal Young and Elderly Humans. Blood 88 (1), 335–340 (1996)

    Google Scholar 

  28. Pfreundschuh, M., Truemper, L., Kloess, M., Schmits, R., Feller, A.C., Ruebe, C., Rudolph, C., Reiser, M., Hossfeld, D.K., Eimermacher, H., Hasenclever, D., Schmitz, N., Loeffler, M.: 2-weekly or 3-weekly CHOP Chemotherapy with or without Etoposide for the Treatment of Elderly Patients with Aggressive Lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 104 (3), 634–641 (2004)

    Article  Google Scholar 

  29. Pfreundschuh, M., Truemper, L., Kloess, M., Schmits, R., Feller, A.C., Rudolph, C., Reiser, M., Hossfeld, D.K., Metzner, B., Hasenclever, D., Glass, B., Ruebe, C., Schmitz, N., Loeffler, M.: 2-weekly or 3-weekly CHOP Chemotherapy with or without Etoposide for the Treatment of Young Patients with Good Prognosis (Normal LDH) Aggressive Lymphomas: results of the NHL-B1 trial of the DSHNHL. Blood 104 (3), 626–633 (2004)

    Article  Google Scholar 

  30. Rechenberg I.: Evolutionsstrategie ‘94 frommann-holzboog, Stuttgart 1994

  31. Schwefel, H.P.: Evolution strategies: A family of nonlinear optimization techniques based on imitating some principles of organic evolution. Ann. Oper. Res. 1, 65–167 (1984)

    Google Scholar 

  32. Sinkule, J.A.: Etoposide: A Semisynthetic Epipodophyllotoxin Chemistry, Pharmacology, Pharmacokinetics, Adverse Effects and Use as an Antineoplastic Agent. Pharmacotherapy 4 (2), 61–73 (1984)

    Google Scholar 

  33. Schmitz, S., Franke, H., Brusis, J., Wichmann, H.E.: Quantification of the cell kinetic effects of G-CSF using a model of human granulopoiesis. Exp. Hem. 21, 755–760 (1993)

    Google Scholar 

  34. Schmitz, S., Franke, H., Loeffler, M., Wichmann, H.E., Diehl, V.: Model analysis of the contrasting effects of GM-CSF and G-CSF treatment on peripheral blood neutrophils observed in three patients with childhood-onset cyclic neutropenia. B. J. Haem. 95, 616–625 (1996)

    Article  Google Scholar 

  35. Schmitz, S., Loeffler, M., Jones, J.B., Lange, R.D., Wichmann, H.E.: Synchrony of bone marrow proliferation and maturation as the origin of cyclic haematopoiesis. Cell Tissue Kinet. 23, 425–441 (1990)

    Google Scholar 

  36. Shimazaki, C., Uchiyama, H., Fujita, N., Araki, S., Sudo, Y., Yamagata, N., Ashihara, E., Goto, H., Inaba, T., Haruyama, H., Nakagawa, M.: Serum levels of endogenous and exogenous granulocyte colony-stimulating factor after autologous blood stem cell transplantation. Exp. Hem. 23, 1497–1502 (1995)

    Google Scholar 

  37. Takahashi, M.: Theoretical basis for cell cycle analysis I. Labelled mitoses wave method. J. Theo. Biol. 13, 202–211 (1966)

    Google Scholar 

  38. Takahashi, M.: Theoretical basis for cell cycle analysis II. Further studies on labelled mitosis wave method. J. Theo. Biol. 18, 195–209 (1968)

    Google Scholar 

  39. Wunderlich, A., Kloess, M., Reiser, M., Rudolph, C., Trümper, L., Bittner, S., Schmalenberg, H., Schmits, R., Pfreundschuh, M., Loeffler, M.: Practicability and acute haematological toxicity of 2- and 3-weekly CHOP and CHOEP chemotherapy for aggressive non-Hodgkin lymphoma: results from the NHL-B trial of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Ann. Oncol. 14 (6), 881–893 (2003)

    Article  Google Scholar 

  40. Wichmann, H.-E., Loeffler, M.: Mathematical Modeling of Cell Proliferation: Stem Cell Regulation in Hemopoiesis. CRC Press, Boca Raton 1985

  41. Wu, W., Sun, G., Tian, G., Wang, Z.: Serum granulocyte colony-stimulating factor in patients with chronic renal failure. Chin. Med. J. 114 (6), 596–599 (2001)

    Google Scholar 

  42. Zelenetz, A.D., Hamlin, P., Kewalramani, T., Yahalom, J., Nimer, S., Moskowitz, C.H.: Ifosfamide, carboplatin, etoposide (ICE)-based second-line chemotherapy for the management of relapsed and refractory aggressive non-Hodgkin’s lymphoma. Ann. Oncol. 14, 5–10 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Scholz.

Additional information

Acknowledgement This paper was supported by the DFG (Deutsche Forschungsgemeinschaft) in the framework of the project “Aufbau von Simulationsmodellen der h{\”a}matopoetischen Dynamik nach konventioneller und hochdosierter Chemotherapie und Zytokingabe beim Menschen” (Nr. LO 342/8-2). We would like to thank the German High Grade Non-Hodgkin’s-Lymphoma Study Group and the German Hodgkin’s Lymphoma Study Group for the kind provision of data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, M., Engel, C. & Loeffler, M. Modelling Human Granulopoiesis under Poly-chemotherapy with G-CSF Support. J. Math. Biol. 50, 397–439 (2005). https://doi.org/10.1007/s00285-004-0295-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0295-1

Key words or phrases

Navigation