Skip to main content
Log in

Modeling Refuge Effect of Submerged Macrophytes in Lake System

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper considers a significant problem in biological control of algae issue in ecological environment. A four-dimensional dynamic model is carefully formulated to characterize the interactions among phytoplankton, submerged macrophyte, zooplankton, and general fish class in a lake ecosystem. The predation relationship is modeled by Beddington–DeAngelis functional responses derived from the classical Holling time budget arguments. Qualitative analyses of the global dynamics show that the system can generate very rich dynamics with potentially 10 different equilibria and several bistable scenarios. We perform analysis on the existence and local stability of equilibria and explore the refuge effect of macrophyte on the zooplankton with numerical simulations on aquatic ecosystems. We also discuss effective methods of biological control used to restrain the increase of phytoplankton. Our study shows the proposed model could have rich and complex dynamics including but not limited to bistable and chaotic phenomenon. Numerical simulation results demonstrate that both the refuge constant and the density of the macrophytes are two key factors where refuge effects take place. In addition, the intraspecific competition between the macrophyte and the phytoplankton can also affect the macrophyte’s refuge effect. Our analytical and simulation results suggest that macrophytes provide structure and shelter against predation for zooplankton such that it could restore the zooplankton population, and that planting macrophyte properly might achieve the purpose of controlling algae growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44(1):331–340

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submerged macrophytes on ecosystem processes. Aquat Bot 26(3–4):341–370

    Article  Google Scholar 

  • Chen M, Fan M, Liu R, Wang XY, Yuan X, Zhu HP (2015) The dynamics of temperature and light on the growth of phytoplankton. J Theor Biol 385:8–19

    Article  Google Scholar 

  • Fan M, Kuang Y, Feng ZL (2005) Cats protecting birds revisited. Bull Math Biol 67(5):1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  • Fussmann GF (2008) The lake as a system of differential equations-a paradigm for the aquatic ecologist of the 21st century? Int Rev Hydrobiol 93(4–5):532–540

    Article  Google Scholar 

  • Genkai-Kato M (2007) Macrophyte refuges, prey behaviour and trophic interactions: consequences for lake water clarity. Ecol Lett 10(2):105–114

    Article  Google Scholar 

  • Gumbo RJ, Ross G, Cloete ET (2008) Biological control of microcystis dominated harmful algal bloom. Afr J Biotechnol 7(25):4765–4773

    Google Scholar 

  • Hawkins BA, Thomas MB, Hochberg ME (1993) Refuge theory and biological control. Science 262(5138):1429–1432

    Article  Google Scholar 

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 97(S45):5–60

    Google Scholar 

  • Janse JH, Scheffer M, Lijklema L et al (2010) Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: sensitivity, calibration and uncertainty. Ecol Model 221(4):654–665

    Article  Google Scholar 

  • Jasser I (1995) The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306(1):21–32

    Article  Google Scholar 

  • Jeppesen E, Sondergaard M, Sondergaard M, Christofferson K (1998) The structuring role of submerged macrophytes in lakes, ecological studies 131. Springer, Berlin

    Book  Google Scholar 

  • Jeppesen E, Jensen PJ, Sondergaard M, Lauridsen T (1999) Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408(409):217–231

    Article  Google Scholar 

  • Lauridsen TL, Buenk I (1996) Diel changes in the horizontal distribution of zooplankton in two shallow eutrophic lakes. Arch Hydrobiol 137(2):161–176

    Google Scholar 

  • Li JM, Huang P, Zhang RD (2010) Modeling the refuge effect of submerged macrophytes in ecological dynamics of shallow lakes: A new model of fish functional response. Ecol Model 221(17):2076–2085

    Article  Google Scholar 

  • Moss B (1990) Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201):367–377

    Article  Google Scholar 

  • Ozimek T, Gulati RD, Van Donk E (1990) Can macrophytes be useful in biomanipulation of lakes? The lake Zwemlust example. Hydrobiologia 200–201(1):399–407

    Article  Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Kluwer, Netherlands

    Google Scholar 

  • Timms RM, Moss B (1984) Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnol Oceanogr Methods 29(3):472–486

    Article  Google Scholar 

  • van Donk E, Gulati RD, Iedema A, Meulemans JT (1993) Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251(1–3):19–26

    Article  Google Scholar 

  • van Donk E, Van de B, Wouter J (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72(3–4):261–274

    Article  Google Scholar 

  • Vermaire JC, Prairie YT, Gregory-Eaves I (2011) The influence of submerged macrophytes on sedimentary diatom assemblages. J Appl Phycol 47(6):1230–1240

    Article  Google Scholar 

  • Wang H, Morrison W, Singh A, Weissa H (2009) Modeling inverted biomass pyramids and refuges in ecosystems. Ecol Model 220(11):1376–1382

    Article  Google Scholar 

  • Xu FL, Jørgensen SE, Tao S, Li BG (1999) Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao). Ecol Model 117(2–3):239–260

    Article  Google Scholar 

  • Zhang JJ, Jørgensen SE, Beklioglu M, Ince O (2003) Hysteresis in vegetation shift-Lake Mogan prognoses. Ecol Model 164(2–3):227–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Fan.

Additional information

Supported by NSFC-11271065, RFPD-20130043110001, and RFCP-CMSP (MF) and NSF-DMS1313312 (YK).

Appendices

Appendix 1: Proof of Theorem 2: Existence and Stability of \(E_{pm}\), \(E_{pz}\), and \(E_{pf}\)

Note that

$$\begin{aligned} P^{*}_{4}=\displaystyle \frac{K_{1}r_{2}(K_{2}\eta _{1}-r_{1})}{\eta _{1}\eta _{2}K_{1}K_{2}-r_{1}r_{2}},~~ M^{*}_{4}=\displaystyle \frac{r_{1}K_{2}(K_{1}\eta _{2}-r_{2})}{\eta _{1}\eta _{2}K_{1}K_{2}-r_{1}r_{2}}; \end{aligned}$$

we have

$$\begin{aligned} J(E_{pm})= \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a_{11} &{} a_{12} &{} a_{13}&{} a_{14}\\ a_{21} &{} a_{22} &{} 0 &{} 0\\ 0 &{} 0 &{} a_{33} &{} 0\\ 0 &{} 0 &{} 0 &{} a_{44} \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} a_{11}&=-\displaystyle \frac{r_{1}P^{*}_{4}}{K_{1}},&a_{12}&=-\eta _{1}P^{*}_{4},&a_{13}&=-\alpha _{1}P^{*}_{4},&a_{14}&=-\displaystyle \frac{a_{1}P^{*}_{4}}{1+\alpha P^{*}_{4}+\beta M^{*}_{4}},\\ a_{21}&\!=\!-\eta _{2}M^{*}_{4},&a_{22}&\!=\!-\displaystyle \frac{r_{2}M^{*}_{4}}{K_{2}},&a_{33}&\!=\!\alpha _{2}P^{*}_{4}-d_{z},&a_{44}&\!=\!\displaystyle \frac{b_{1}P^{*}_{4}}{1\!+\!\alpha P^{*}_{4}\!+\!\beta M^{*}_{4}}-d_{f}. \end{aligned}$$

It is clear that \(a_{33}\) and \(a_{44}\) are two of the eigenvalues for \(J(E_{pm})\) and the other two eigenvalues solve the following equation

$$\begin{aligned} \lambda ^{2}+c_{1}\lambda +c_{2}=0, \end{aligned}$$

where

$$\begin{aligned} c_{1}=\displaystyle \frac{r_{1}P^{*}_{4}}{K_{1}}+\displaystyle \frac{r_{2}M^{*}_{4}}{K_{2}}>0,~~ c_{2}=\displaystyle \frac{r_{1}r_{2}-\eta _{1}\eta _{2}K_{1}K_{2}}{K_{1}K_{2}}P^{*}_{4}M^{*}_{4}>0. \end{aligned}$$

It is not difficult to show that all the eigenvalues of \(J(E_{pm})\) have negative real parts. Therefore, \(E_{pm}\) is locally asymptotically stable.

For \(E_{pz}\), we have

$$\begin{aligned} J(E_{pz})= \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} -\displaystyle \frac{r_{1}P^{*}_{5}}{K_{1}} &{} -\eta _{1}P^{*}_{5} &{} -\alpha _{1}P^{*}_{5} &{} -\displaystyle \frac{a_{1}P^{*}_{5}}{1+\alpha P^{*}_{5}+\gamma Z^{*}_{5}}\\ 0 &{} r_{2}-\eta _{2}P^{*}_{5} &{} 0 &{} 0\\ \alpha _{2}Z^{*}_{5} &{} 0 &{} 0 &{} -\displaystyle \frac{a_{2}Z^{*}_{5}}{1+\alpha P^{*}_{5}+\gamma Z^{*}_{5}}\\ 0 &{} 0 &{} 0 &{} \displaystyle \frac{b_{1}P^{*}_{5}+b_{2}Z^{*}_{5}}{1+\alpha P^{*}_{5}+\gamma Z^{*}_{5}}-d_{f} \end{array}\right) \end{aligned}$$

whose two eigenvalues are

$$\begin{aligned} r_{2}-\eta _{2}P^{*}_{5},~~\displaystyle \frac{b_{1}P^{*}_{5}+b_{2}Z^{*}_{5}}{1+\alpha P^{*}_{5}+\gamma Z^{*}_{5}}-d_{f} \end{aligned}$$

and other two eigenvalues solve \(\lambda ^{2}+c_{1}\lambda +c_{2}=0\) with \(c_{1}=r_{1}P^{*}_{5}/K_{1}>0\) and \(c_{2}=\alpha _{1}\alpha _{2}P^{*}_{5}Z^{*}_{5}.\) Direct calculation shows that all the eigenvalues of \(J(E_{pz})\) have negative real parts. Therefore, \(E_{pz}\) is locally asymptotically stable.

Direct calculation leads to the first claim on the existence of \(E_{pf}\). In addition,

$$\begin{aligned} J(E_{pf})=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} -\displaystyle \frac{r_{1}P^{*}_{6}}{K_{1}}+\displaystyle \frac{a_{1}\alpha P^{*}_{6}F^{*}_{6}}{(1+\alpha P^{*}_{6})^{2}} &{} -\eta _{1}P^{*}_{6}+\displaystyle \frac{a_{1}\beta F^{*}_{6}P^{*}_{6}}{(1+\alpha P^{*}_{6})^{2}} &{} -\alpha _{1}P^{*}_{6}+\displaystyle \frac{a_{1}\gamma P^{*}_{6}F^{*}_{6}}{(1+\alpha P^{*}_{6})^{2}} &{} -\displaystyle \frac{a_{1}P^{*}_{6}}{1+\alpha P^{*}_{6}} \\ 0 &{} r_{2}-\eta _{2}P^{*}_{6} &{} 0 &{} 0\\ 0 &{} 0 &{} \alpha _{2}P^{*}_{6}-\displaystyle \frac{a_{2}F^{*}_{6}}{1+\alpha P^{*}_{6}}-d_{z} &{} 0\\ \displaystyle \frac{b_{1}F^{*}_{6}}{(1+\alpha P^{*}_{6})^{2}} &{} -\displaystyle \frac{b_{1}\beta P^{*}_{6}F^{*}_{6}}{(1+\alpha P^{*}_{6})^{2}} &{} \displaystyle \frac{b_{2}F^{*}_{6}(1+\alpha P^{*}_{6})- b_{1}\gamma P^{*}_{6}F^{*}_{6}}{(1+\alpha P^{*}_{6})^{2}}&{} 0 \end{array}\right) . \end{aligned}$$

Two of the eigenvalues of \(J(E_{pf})\) are

$$\begin{aligned} r_{2}-\eta _{2}P^{*}_{6},~~-d_{z}-\displaystyle \frac{a_{2}r_{1}}{a_{1}}+\displaystyle \frac{K_{1}\alpha _{2}a_{1}+a_{2}r_{1}}{a_{1}K_{1}}P^{*}_{6} \end{aligned}$$

and the other two eigenvalues are given by the following equation

$$\begin{aligned} \lambda ^{2}+c_{1}\lambda +c_{2}=0, \end{aligned}$$

where

$$\begin{aligned} c_{1}=\displaystyle \frac{r_{1}P_{6}^{*}(1+2\alpha P_{6}^{*}-\alpha K_{1})}{K_{1}(1+\alpha P_{6}^{*})}>0,~~c_{2}=\displaystyle \frac{a_{1}b_{1}P^{*}_{6}F^{*}_{6}}{(1+\alpha P^{*}_{6})^{3}}>0. \end{aligned}$$

Since all the eigenvalues of \(J(E_{pf})\) have negative real parts, \(E_{pf}\) is locally asymptotically stable. \(\square \)

Appendix 2: Proof of Theorem 3: Existence and Stability of \(E_{pmz}\)

From (7), it follows that

$$\begin{aligned} P^{*}_{7}\!=\!\displaystyle \frac{d_{z}}{\alpha _{2}},~~M^{*}_{7}\!=\!\displaystyle \frac{K_{2}(r_{2}\alpha _{2}\!-\!\eta _{2}d_{z})}{r_{2}\alpha _{2}},~~ Z^{*}_{7}\!=\!\displaystyle \frac{r_{1}r_{2}(K_{1}\alpha _{2}-d_{z})\!-\!\eta _{1}K_{1}K_{2}(r_{2}\alpha _{2}\!-\!\eta _{2}d_{z})}{K_{1}r_{2}\alpha _{1}\alpha _{2}}. \end{aligned}$$

Then the existence of \(E_{pmz}\) is obvious. In addition,

$$\begin{aligned} J(E_{pmz})=\left( \begin{array}{cccc} -\displaystyle \frac{r_{1}P^{*}_{7}}{K_{1}} &{} -\eta _{1}P^{*}_{7} &{} -\alpha _{1}P^{*}_{7} &{} -\displaystyle \frac{a_{1}P^{*}_{7}}{1+\alpha P^{*}_{7}+\beta M^{*}_{7}+\gamma Z^{*}_{7}} \\ -\eta _{2}M^{*}_{7} &{} -\displaystyle \frac{r_{2}M^{*}_{7}}{K_{2}} &{} 0 &{} 0\\ \alpha _{2}Z^{*}_{7} &{} 0 &{} 0 &{} -\displaystyle \frac{a_{2}Z^{*}_{7}}{1+\alpha P^{*}_{7}+\beta M^{*}_{7}+\gamma Z^{*}_{7}}\\ 0 &{} 0 &{} 0&{} \displaystyle \frac{b_{1} P^{*}_{7}+b_{2}Z^{*}_{7}}{1+\alpha P^{*}_{7}+\beta M^{*}_{7}+\gamma Z^{*}_{7}}-d_{f} \end{array}\right) . \end{aligned}$$

Then, \((b_{1} P^{*}_{7}+b_{2}Z^{*}_{7})/(1+\alpha P^{*}_{7}+\beta M^{*}_{7}+\gamma Z^{*}_{7})-d_{f}\) is one of the eigenvalues of \(J(E_{pmz})\) and the other three eigenvalues solve

$$\begin{aligned} \lambda ^{3}+c_{1}\lambda ^{2}+c_{2}\lambda +c_{3}=0, \end{aligned}$$

where

$$\begin{aligned} c_{1}= & {} \displaystyle \frac{r_{1}P^{*}_{7}}{K_{1}}+\displaystyle \frac{r_{2}M^{*}_{7}}{K_{2}}>0,~~c_{3}=\displaystyle \frac{\alpha _{1}\alpha _{2}r_{2}P^{*}_{7}M^{*}_{7}Z^{*}_{7}}{K_{2}}>0,\nonumber \\ c_{2}= & {} \displaystyle \frac{(r_{1}r_{2}-\eta _{1}\eta _{2}K_{1}K_{2})P^{*}_{7}M^{*}_{7}+\alpha _{1}\alpha _{2}K_{1}K_{2}P_{7}^{*}Z_{7}^{*}}{K_{1}K_{2}},\nonumber \\ c_{1}c_{2}-c_{3}\!= & {} \!\displaystyle \frac{(r_{1}K_{2}P^{*}_{7}\!+\!K_{1}r_{2}M^{*}_{7})(r_{1}r_{2}\!-\!\eta _{1}\eta _{2}K_{1}K_{2})P^{*}_{7}M^{*}_{7}\!+\!\alpha _{1}\alpha _{2}r_{1}K_{1}K^{2}_{2}P^{*^{2}}_{7}Z^{*}_{7}}{K^{2}_{1}K^{2}_{2}}>0. \end{aligned}$$

By Routh–Hurwitz criteria, all the eigenvalues of \(J(E_{pmz})\) have negative real parts. Therefore, \(E_{pmz}\) is locally asymptotically stable. \(\square \)

Appendix 3: Proof of Theorem 4: Existence and Stability of \(E_{pmf}\)

Note that \(P^{*}_{8}, M^{*}_{8}, F^{*}_{8}\) solve (8) and (8) is equivalent to

$$\begin{aligned} M=-\displaystyle \frac{\eta _{2}K_{2}}{r_{2}}P+K_{2},~~M=\displaystyle \frac{b_{1}-\alpha d_{f}}{\beta d_{f}}P-\displaystyle \frac{1}{\beta },~~F=\displaystyle \frac{b_{1}\left[ r_{1}\left( 1-\displaystyle \frac{P}{K_{1}}\right) -\eta _{1}M\right] P}{a_{1}d_{f}}; \end{aligned}$$
(19)

then, \((P^{*}_{8}, M^{*}_{8})\) is the intersection of the straight lines \(l_1\) and \(l_2\), which are defined by the first two equations of (19), respectively, and

$$\begin{aligned} F_8^*=\displaystyle \frac{b_{1}\left[ \displaystyle \frac{\eta _{1}\eta _{2}K_{1}K_{2} -r_{1}r_{2}}{K_{1}r_{2}}P^{2}-(\eta _{1}K_{2}-r_{1})P\right] }{a_{1}d_{f}}|_{P=P_8^*}. \end{aligned}$$
(20)

In fact, if

$$\begin{aligned} 0<\displaystyle \frac{d_{f}}{b_{1}-\alpha d_{f}}<\min \left\{ K_{1},~~\displaystyle \frac{r_{2}}{\eta _{2}}\right\} , \end{aligned}$$
(21)

then \(l_1\) and \(l_2\) have a unique intersection in the positive quadrant of \(P-M\) plane (see Fig 10) with

$$\begin{aligned} P_{8}^{*}=\displaystyle \frac{(K_{2}\beta +1)d_{f}r_{2}}{(b_{1}-\alpha d_{f})r_{2}+\eta _{2}K_{2}\beta d_{f}}. \end{aligned}$$
(22)

According to the characteristics of \(l_3\) and the relative location of \(l_3\) and \(l_4\), if one of (9)–(12) is satisfied, then the parabola \(l_3\) defined by (20) and the straight line \(l_4\) defined by (22) intersect at a unique point in the positive quadrant of \(P-F\) plane (see Fig. 11 for more details), which implies that \(F_8^*\) is positive.

Fig. 10
figure 10

Location and intersection of the straight lines \(l_1\) and \(l_2\). \(l_1\) and \(l_2\) have a unique intersection in the positive quadrant if (21) is satisfied

Fig. 11
figure 11

Location and intersection of the parabola defined by (20) and the straight line \(l_4\) defined by (22), which imply that \(F_8^*\) is positive. a (9) is satisfied. b (10) is satisfied. c (11) or (12) is satisfied. d \(\eta _{1}\eta _{2}K_{1}K_{2}-r_{1}r_{2}=0\) (\(l_3\) degenerates to a straight line). Here \(A=([(\eta _{1}K_{2}-r_{1})K_{1}r_{2}]/[\eta _{1}\eta _{2}K_{1}K_{2}-r_{1}r_{2}],0)\), \(B=([(K_{2}\beta +1)d_{f}r_{2}]/[(b_{1}-\alpha d_{f})r_{2}+\eta _{2}K_{2}\beta d_{f}],0)\)

Due to the different cases for the existence of \(E_{pmf}\), it seems tedious to derive sufficient conditions for the stability of \(E_{pmf}\). As an example, we only deal with one case. The other cases can be explored similarly. For the stability of \(E_{pmf}\), consider the Jacobian at \(E_{pmf}\)

$$\begin{aligned} J(E_{pmf})= \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a_{11} &{} a_{12} &{} a_{13}&{} a_{14}\\ a_{21} &{} a_{22} &{} 0 &{} 0\\ 0 &{} 0 &{} a_{33} &{} 0\\ a_{41} &{} a_{42} &{} a_{43}&{} 0 \end{array}\right) , \end{aligned}$$

where

$$\begin{aligned} a_{11}&=-\displaystyle \frac{r_{1}P^{*}_{8}}{K_{1}}+\displaystyle \frac{a_{1}\alpha P^{*}_{8}F^{*}_{8}}{(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{2}},&a_{12}&=-\eta _{1}P^{*}_{8}+\displaystyle \frac{a_{1}\beta P^{*}_{8}F^{*}_{8}}{(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{2}},\\ a_{13}&=-\alpha _{1}P^{*}_{8}+\displaystyle \frac{a_{1}\gamma P^{*}_{8}F^{*}_{8}}{(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{2}},&a_{14}&=-\displaystyle \frac{a_{1}P^{*}_{8}}{1+\alpha P^{*}_{8}+\beta M^{*}_{8}},\\ a_{21}&=-\eta _{2}M^{*}_{8},&a_{22}&=-\displaystyle \frac{r_{2}M^{*}_{8}}{K_{2}},\\ a_{33}&=\alpha _{2}P^{*}_{8}-d_{z}-\displaystyle \frac{a_{2} \left[ r_{1}\left( 1-\displaystyle \frac{P^{*}_{8}}{K_{1}}\right) -\eta _{1}M^{*}_{8}\right] }{a_{1}},&a_{41}&=\displaystyle \frac{b_{1}F^{*}_{8}(1+\beta M^{*}_{8})}{(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{2}},\\ a_{42}&=-\displaystyle \frac{\beta d_{f}F^{*}_{8}}{1+\alpha P^{*}_{8}+\beta M^{*}_{8}},&a_{43}&=\displaystyle \frac{b_{2}F^{*}_{8}(1+\alpha P^{*}_{8}+\beta M^{*}_{8})-b_{1}\gamma P^{*}_{8}F^{*}_{8}}{(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{2}}.\\ \end{aligned}$$

One eigenvalue of \(J(E_{pmf})\) is

$$\begin{aligned} a_{33}=\displaystyle \frac{a_{1}K_{1}r_{2}\alpha _{2}+a_{2}r_{1}r_{2}-\eta _{1}\eta _{2}a_{2}K_{1}K_{2}}{a_{1}K_{1}r_{2}}P_{8}^{*}+\displaystyle \frac{a_{2}\eta _{1}K_{2}-a_{2}r_{1}-a_{1}d_{z}}{a_{1}}<0 \end{aligned}$$

and the other eigenvalues solve

$$\begin{aligned} |\lambda E-A|=\lambda ^{3}+c_{1}\lambda ^{2}+c_{2}\lambda +c_{3}, \end{aligned}$$

where

$$\begin{aligned} A= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} a_{11} &{} a_{12} &{} a_{14}\\ a_{21} &{} a_{22} &{} 0 \\ a_{41} &{} a_{42} &{} 0 \end{array}\right) ,\\ c_{1}= & {} \displaystyle \frac{r_{1}r_{2}(b_{1}+d_{f}\alpha )-K_{1}\eta _{2}(b_{1}r_{2} +\alpha d_{f}\eta _{1}K_{2})}{b_{1}K_{1}r_{2}}P^{*}_{8}\\&\quad +\,\displaystyle \frac{b_{1}r_{2}+\alpha d_{f}\eta _{1}K_{2}-\alpha d_{f}r_{1}}{b_{1}}>0,\\ c_{2}= & {} \displaystyle \frac{a_{1}b_{1}P^{*}_{8}F^{*}_{8}(1+\beta M^{*}_{8})}{(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{3}} +\displaystyle \frac{( K_{2}a_{1}\beta \eta _{2}-a_{1}\alpha r_{2})P^{*}_{8}M^{*}_{8} F^{*}_{8}}{K_{2}(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{2}}\\&\quad +\,\displaystyle \frac{(r_{1}r_{2}-\eta _{1}\eta _{2}K_{1}K_{2})P^{*}_{8}M^{*}_{8}}{K_{1}K_{2}}>0,\\ c_{3}= & {} \displaystyle \frac{a_{1}b_{1}r_{2}(1+\beta M^{*}_{8})P^{*}_{8}M^{*}_{8} F^{*}_{8}}{K_{2}(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{3}} +\displaystyle \frac{a_{1}b_{1}\eta _{2}\beta P^{*^{2}}_{8}M^{*}_{8}F^{*}_{8}}{(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{3}}\\&\quad +\displaystyle \frac{(r_{1}r_{2}-\eta _{1}\eta _{2}K_{1}K_{2})P^{*^{2}}_{8}M^{*}_{8}F^{*}_{8}}{K_{1}K_{2}(1+\alpha P^{*}_{8}+\beta M^{*}_{8})^{2}}>0,\\ c_{1}c_{2}-c_{3}= & {} \displaystyle \frac{a_{1}\eta _{2}\beta [a_{1}\alpha ^{2}(\eta _{1} \eta _{2}K_{1}K_{2}-r_{1}r_{2})P_{8}^{*} +K_{1}a_{1}\alpha ^{2}r_{2}(r_{1}-\eta _{1}K_{2})-b_{1}K_{1}] P^{*^{2}}_{8}M^{*}_{8}F^{*}_{8}}{K_{1}(1+\alpha P^{*}_{8} +\beta M^{*}_{8})^{3}}>0. \end{aligned}$$

By Routh–Hurwitz criteria, all the eigenvalues are negative, and hence, \(E_{pmf}\) is locally asymptotically stable. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, D., Fan, M., Kang, Y. et al. Modeling Refuge Effect of Submerged Macrophytes in Lake System. Bull Math Biol 78, 662–694 (2016). https://doi.org/10.1007/s11538-016-0154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0154-4

Keywords

Navigation