Skip to main content
Log in

Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components

  • Part Five: Macrophytes
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Engineering approaches (nutrient removal, sediment pumping, hypolimnion oxygenation, alum treatments) may be most appropriate to deep lakes where the aim of restoration from eutrophication is simply to reduce the production and crop of one component, the phytoplankton. They do not always give the desired results because the nutrient loading may only be reduced to a limited extent. There are additional problems in shallow lakes where change of state between community dominance (aquatic plants versus plankton) is wanted. Each community has powerful buffering mechanisms and biomanipulation may be essential to switch one state to another even with considerable nutrient reduction.

For the phytoplankton-dominated community the buffers include the advantages of early growth, lower diffusion pathways for CO2, overhead shading, and an absence of large cladoceran grazers. This later is because open-water shallow environments provide no refuges against predation for the large Cladocera which are both the most efficient grazers and the most favoured prey for fish. Restoration of aquatic plants may then require provision of refuges for the grazers. Different sorts of refuge are discussed using case studies of Hoveton Great Broad and Cockshoot Broad in the Norfolk Broadland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anglian Water, 1987. The control of phosphorus in the catchment of the Rivers Ant and Bure. 1st Annual Report. Norwich, 12 pp.

  • Balls, H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication. I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwat. Biol. 22: 71–87.

    Article  Google Scholar 

  • Barica, J. M., 1988. Recovery of the Laurentian Great Lakes, 1970–1985: Eutrophication aspects. Environment Canada, NWRI Contribution 88-44, 15 pp.

  • Bengtsson, L., S. Fleischer, G. Lindmark & W. Ripl, 1975. Lake Trummen Restoration Project. I. Water and sediment chemistry. Verh. int. Ver. theor. angew. Limnol. 19: 1080–1087.

    Google Scholar 

  • Bernhardt, H., 1987. Strategies of lake sanitation. Schweiz. Z. Hydrol. 49: 202–219.

    CAS  Google Scholar 

  • Bernhardt, H., 1988. Input control of nutrient by chemical and biological methods. Water supply 1: 187–206.

    Google Scholar 

  • Bernhardt, H. & J. Clasen, 1985. Recent developments and perspectives of restoration for artificial basins. In R. Vismara, R. Marforio, V. Mezzanotte & S. Cernuschi (eds)Lake Pollution and Recovery. Europ. Wat. Pollut. Contr. Ass, Rome: 292–307.

    Google Scholar 

  • Bjork, S., 1985. Scandinavian lake restoration activities. In R. Vismara, R. Marforio, V. Mezzanotte & S. Cernuschi (eds)Lake Pollution and Recovery. Europ. Wat. Pollut. Contr. Ass, Rome: 373–382.

    Google Scholar 

  • Boar, R. R., C. E. Crook & B. Moss, 1989. Regression ofPhragmites australis reedswamps and recent changes of water chemistry in the Norfolk Broadland, England. Aquat. Bot. 35: 41–55.

    Article  CAS  Google Scholar 

  • Bondi, H., 1985. A model of discontinuous change in a three-component community. Proc. Roy. Soc. London B 224: 1–6.

    Article  Google Scholar 

  • Boorman, L. A. & R. M. Fuller, 1981. The changing status of reedswamp in the Norfolk Broads. J. Appl. Ecol. 18: 241–269.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Collingwood, R. W., 1977. A survey of eutrophication in Britain and its effects on water supplies. Technical Report TR40. Water Research Centre, Medmenham, 46 pp.

    Google Scholar 

  • Collins, M., 1978. Algal toxins. Microbiol. Rev. 42: 725–746.

    CAS  PubMed  Google Scholar 

  • Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodies and small-bodied cladocerans. Hydrobiologia 200/201: 43–47.

    Google Scholar 

  • Davis, J. C., 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Bd Canada 32: 2295–2332.

    Google Scholar 

  • De Nie, A. W., 1987. The decrease in aquatic vegetation in Europe and its consequences for fish populations. EIFAC Occasional Paper 19. FAO, Rome, 88 pp.

    Google Scholar 

  • Denny, P., 1980. Solute movement in submerged angiosperms. Biol. Rev. 50: 65–92.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. A test of a simply method for predicting the capacity of a lake for development based on lake trophic status. J. Fish. Res. Bd Canada 32: 1519–1531.

    Google Scholar 

  • Dobson, H. F., 1981. Trophic conditions and trends in the Laurentian Great Lakes. W.H.O. Water Qual. Bull. 6: 146–160.

    Google Scholar 

  • Edmondson, W. T., 1985. Recovery of Lake Washington from eutrophication. In R. Vismara, R. Marforio, V. Mezzanotte & S. Cernuschi (eds) Lake Pollution and Recovery. Europ. Wat. Pollut. Contr. Ass., Rome: 308–315.

    Google Scholar 

  • Engel, S., 1987. The restructuring of littoral zones. Lake and Res. Man. 3: 235–242.

    Google Scholar 

  • Fitzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae and aquatic weeds. J. Phycol. 5: 351–359.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocera fail to control algal blooms? Hydrobiologia 200/201: 83–97.

    Google Scholar 

  • Holdway, P. A., R. A. Watson & B. Moss, 1978. Aspects of the ecology ofPrymnesium parvum (Haptophyta) and water chemistry in the Norfolk Broads, England. Freshwat. Biol. 8: 295–311.

    Article  CAS  Google Scholar 

  • Howard-Williams, C., 1981. Studies on the ability of aPotamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from lake water. J. appl. Ecol. 18: 619–637.

    Article  CAS  Google Scholar 

  • Irvine, K., B. Moss & J. H. Stansfield, 1990. The potential of artificial refugia for maintaining a community of large-bodied cladocera against fish predation in shallow eutrophic lake. Hydrobiologia 200/201: 379–389.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjaer, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990. Fish manipulation as a lake restoration toolin shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218.

    Google Scholar 

  • Jhingran, V. G., 1975. Fish & Fisheries of India Hindustan Publishing Corporation, Delhi., 740 pp.

    Google Scholar 

  • Keto, J. & I. Sammalkorpi, 1988. A fading recovery: a conceptual model for Lake Vesijarvi management and research. Aquat. Fenn. 18: 193–204.

    CAS  Google Scholar 

  • Maberley, S. C. & D. H. N. Spence, 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71: 705–724.

    Article  Google Scholar 

  • Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment release. Freshwat. Biol. 21: 139–162.

    Article  CAS  Google Scholar 

  • McQueen, D. J., M. R. S. Johannes, N. R. Lafontaine, A. S. Young, E. Longbotham & D. R. S. Lean, 1990. Effects of planktivore abundance on chlorophyll-a and Secchi depth. Hydrobiologia 200/201: 337–341.

    Google Scholar 

  • McQueen, D. J. & D. R. S. Lean, 1986. Hypolimnetic aeration: an overview. Wat. Pollut. Res. J. Canada 21: 205–217.

    CAS  Google Scholar 

  • Meijer, M.-L., A. J. P. Raat & R. W. Doef, 1989. Restoration by biomanipulation of the Dutch shallow, eutrophic Lake Bleiswijkse zoom: first results. Hydrobiol. Bull. 23: 49–58.

    Article  CAS  Google Scholar 

  • Mitchell, D. S., (Ed), 1974. Aquatic Vegetation and its Control UNESCO, Paris, 159 pp.

    Google Scholar 

  • Moss, B., 1983. The Norfolk Broadland: Experiments in the restoration of a complex wetland. Biol. Rev. 58: 521–561.

    Google Scholar 

  • Moss, B., 1987. The Broads. Biologist 34: 7–13.

    Google Scholar 

  • Moss, B., 1989. Water pollution and the management of exosystems: a case study of science and scientist. In P. J. Grubb & J. H. Whittaker (eds) Towards a More Exact Ecology. Blackwell Scientific, Oxford: pp. 401–423.

    Google Scholar 

  • Moss, B., H. Balls, K. Irvine & J. Stansfield, 1986. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment. J. appl. Ecol. 23: 391–414.

    Article  CAS  Google Scholar 

  • Moss, B. & R. T. Leah, 1982. Changes in the ecosystem of a guanotrophic and brackish shallow lake in Eastern England: potential problems in its restoration. Int. Revue ges. Hydrobiol. 67: 625–659.

    CAS  Google Scholar 

  • Murphy, T. P., K. G. Hall & T. G. Northcote, 1988. Lime treatment of a hardwater lake to reduce eutrophication. Lake and Res. Man. 4: 51–62.

    Google Scholar 

  • Ozimek, T., R. D. Gulati, E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201: 399–407.

    Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD), 1982.Eutrophication of Waters. Paris, 155 pp.

  • Rosa, F., 1987. Lake Erie central basin total phosphorus trend analysis from 1968 to 1982. J. Gt Lakes Res. 13: 667–673.

    CAS  Google Scholar 

  • Scheffer, M., 1989. Alternative stable states in eutrophic shallow fresh water systems: a minimal model. Hydrobiol. Bull. 23: 73–84.

    Article  Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: The next phase — making it stable. Hydrobiologia 200/201: 13–27.

    Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation. Freshwat. Biol. 14: 371–383.

    Article  Google Scholar 

  • Simpson, P. S. & J. W. Eaton, 1986. Comparative studies of the photosynthesis of the submerged macrophyteElodea canadensis and filamentous algaeCladophora glomerata andSpirogyra sp. Aquat. Bot. 14: 1–12.

    Article  Google Scholar 

  • Smith, G. R., 1978. Botulism, waterfowl and mud. Brit. Vet. J. 134: 407–411.

    CAS  Google Scholar 

  • Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjaer, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200/201: 229–240.

    Google Scholar 

  • Stansfield, J. H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication III. Potential role of organochlorine pesticides: a palaeoecological study. Freshwat. Biol. 22: 109–132.

    Article  Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a freshwater wetland ecosystem. Limnol. Oceanogr. 29: 472–486.

    Article  Google Scholar 

  • Toth, L., 1972. Reeds control eutrophication of Balaton Lake. Wat. Res. 6: 1533–1539.

    Article  CAS  Google Scholar 

  • Van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food-web manipulation in Lake Zwemlust, in the two years after biomanipulation. Hydrobiol. Bull. 23: 19–34.

    Article  Google Scholar 

  • Van Vierssen, W. & Th. C. Prins, 1985. On the relationship between the growth of algae and aquatic plants in brackish water. Aquat. Bot. 21: 165–179.

    Article  Google Scholar 

  • Welch, E. B., C. L. De Gasperi, D. C. Spyridakis & T. J. Belnick, 1988. Internal phosphorus loading and alum effectiveness in shallow lakes. Lake and Res. Man. 4: 27–33.

    Article  Google Scholar 

  • Winfield, I., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach,Rutilus rutilus, rudd,Scardinius erythrophthalmus and perch,Perca fluviatilis. J. Fish Biol. 29 Supplement A: The Behaviour of Fishes: 37–48.

    Article  Google Scholar 

  • Zutshi, D. P. & A. Ticku, 1990. Impact of mechanical deweeding on Dal Lake ecosystem. Hydrobiologia 200/201: 419–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200, 367–377 (1990). https://doi.org/10.1007/BF02530354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530354

Key words

Navigation