Skip to main content
Log in

The influence of macrophytes on a phytoplankton community in experimental conditions

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The impact of submerged macrophytes or their extracts on planktonic algae was studied under experimental conditions. Live Ceratophyllum demersum L., its extract, and extracts of four other plant species induced modifications in the phytoplankton dominance structure. These modifications were: a decline in the number of Oscillatoria limnetica Lemm., which was the most numerous cyanobacterian species, and a decline in biomass and percentage contribution of all cyanobacteria to total algal biomass. This was accompanied by an increase in biomass and percentage contribution of green algae, especially Chlorella sp. and Chlamydomonas sp. Also, there was an increase in biomass and percentage contribution of nanoplankton (under 50 µm) to total phytoplankton biomass.

The isolation of planktonic algae from direct influence of C. demersum by means of dialysis membranes caused an increase in number, biomass and percentage contribution of cyanobacteria. Release of organic compounds of over 3000 daltons by macrophytes apparently contributed to a decline of cyanobacteria by changing the phytoplankton dominance structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balls, H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication. I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds of the Nortfolk Broadland. Freshwat. Biol. 22: 71–87.

    Google Scholar 

  • Brammer, E. S., 1979. Exclusion of phytoplankton in the proximity of dominant water-soldier (Stratiotes aloides). Freshwat. Biol. 9: 233–248.

    Google Scholar 

  • Carignan, R., 1982. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. aquat. Sci. 39: 243–247.

    Google Scholar 

  • Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207: 987–989.

    Google Scholar 

  • Denny, P., 1972. Site of nutrient absorption in aquatic macrophytes. J. Ecol. 60: 819–829.

    Google Scholar 

  • Dokulil, M., 1973. Planktonic primary production within the Phragmites community of Lake Neusiedlersee (Austria). Pol. Arch. Hydrobiol. 20: 175–180.

    Google Scholar 

  • Forsberg, C., S. Kleiven & T. Willen, 1990. Absence of allelopathic effects of Chara on phytoplankton in situ. Aquat. Bot. 38: 289–294.

    Google Scholar 

  • Gibbs, G. W., 1973. Cycles of macrophytes and phytoplankton in Pukepuke lagoon following a severe drought. Proc. N. Z. Ecol. Soc. 20: 13–20.

    Google Scholar 

  • Hasler, A. D. & E. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 359–364.

    Google Scholar 

  • Hindak, F., (ed.) 1978. Sladkovodne riasy (Freshwater algae). SPN, Bratislava, 725 pp.

    Google Scholar 

  • Hogetsu, K. M., Y. Okanishi & H. Sugawara, 1960. Studies on the antagonistic relationship between phytoplankton and rooted aquatic plants. Jap. J. Limnol. 21: 124–130.

    Google Scholar 

  • Jones, Ch., 1990. The effect of submersed aquatic vegetation on phytoplankton and water quality in the tidal freshwater Potomac River. J. Freshwat. Ecol. 5: 279–289.

    Google Scholar 

  • Kleiven, S. & W. Szczepánska, 1988. The effects of extracts from Chara tomentosa and two other aquatic macrophytes on seed germination. Aquat. Bot. 32: 193–198.

    Google Scholar 

  • Kogan, S. I., G. A. Chinnova & M. E. Kravchenko, 1972. The effect of macrophytes on certain algae in joint cultivation. Izv. Akad. Nauk Turkm. SSR Ser. Biol. Nauk. 3: 3–8.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 367–377.

    Google Scholar 

  • Moss, B., H. Balls, K. Irvin & J. Stansfield, 1986. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment. J. appl. Ecol. 23: 391–414.

    Google Scholar 

  • Ozimek, T. & A. Kowalczewski, 1984. Long-term changes of the submerged macrophytes in eutrophic Lake Mikolajskie (North Poland). Aquat. Bot. 19: 1–11.

    Google Scholar 

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Google Scholar 

  • Pokorny, J., I. Kvet, I. P. Ondok, Z. Toul & I. Ostry, 1984. Production-ecological analysis of a plant community dominated by Elodea canadensis Michx. Aquat. Bot. 19: 263–292.

    Google Scholar 

  • Rørslett, B., D. Berge & S. W. Johansen, 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot. 26: 325–340.

    Google Scholar 

  • Saunders, G. W., 1980. Organic matter and decomposers. In E. D. Le Cren & R. H. McConnel (eds), The Functioning of Freshwater Ecosystems. IBP, 22. Cambridge Univ. Press: 341–392.

  • Siemińska, J., 1964. Chrysophyta. II. Bacillariophyceae — okrzemki. Flora slodkowodna Polski. 6 (Chrysophyta. II. Bacillariophycea — diatoms. The freshwater flora of Poland. 6). PWN, Warszawa, 610 pp.

    Google Scholar 

  • Simm, A. 1989. The phytoseston of the Vistula River between Góra Kalwaria and Nowy Dwór Mazowiecki in 1982. Ekol. pol. 33: 439–453.

    Google Scholar 

  • Schreiter, T., 1928. Untersuchungen über den Einfluss einer Helodea-wucherung auf das Netzplankton des Hirshberger Grossteiches in Bohmen in den Jahren 1921 his 1925 incl. Sb. vyzk. Ust. Zemed. R. C. S., 98 pp.

  • Starmach, K., 1966. Cyanophyta — Sinice. Glacophyta — Glaukofity. Flora slodkowodna Polski. 2 (Cyanophyta — cyanobacteria. Glaucophyta — glaucophyte. The freshwater flora of Poland. 2). PWN, Warszawa, 807 pp.

    Google Scholar 

  • Starmach, K., 1989. Plankton roślinny wód slodkich. Metody badania i klucze do oznaczania gatunków wystepujacych w wodach Europy Środkowej (The freshwater phytoplankton. Research methods and keys to identification of species from Central European waters). PWN, Warszawa, Kraków, 496 pp.

    Google Scholar 

  • Unni, K. S., 1977. The distribution and production of macrophytes in Lunz Mittersee and Luna Untersee. Hydrobiologia 56: 89–94.

    Google Scholar 

  • Wetzel, R. G. & R. A. Hough, 1973. Productivity and role of aquatic macrophytes in lakes. An assessment. Pol. Arch. Hydrobiol. 20: 9–19.

    Google Scholar 

  • Wium-Andersen, S., C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasser, I. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306, 21–32 (1995). https://doi.org/10.1007/BF00007855

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007855

Key words

Navigation