Skip to main content

Advertisement

Log in

SIS and SIR Epidemic Models Under Virtual Dispersal

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is a function of the residence time and local environmental risk. This novel approach eliminates the need to define and measure contact rates that are used in the traditional multi-group epidemic models with heterogeneous mixing. We apply this approach to a general n-patch SIS model whose basic reproduction number \({\mathcal {R}}_0 \) is computed as a function of a patch residence-time matrix \({\mathbb {P}}\). Our analysis implies that the resulting n-patch SIS model has robust dynamics when patches are strongly connected: There is a unique globally stable endemic equilibrium when \({\mathcal {R}}_0>1 \), while the disease-free equilibrium is globally stable when \({\mathcal {R}}_0\le 1 \). Our further analysis indicates that the dispersal behavior described by the residence-time matrix \({\mathbb {P}}\) has profound effects on the disease dynamics at the single patch level with consequences that proper dispersal behavior along with the local environmental risk can either promote or eliminate the endemic in particular patches. Our work highlights the impact of residence-time matrix if the patches are not strongly connected. Our framework can be generalized in other endemic and disease outbreak models. As an illustration, we apply our framework to a two-patch SIR single-outbreak epidemic model where the process of disease invasion is connected to the final epidemic size relationship. We also explore the impact of disease-prevalence-driven decision using a phenomenological modeling approach in order to contrast the role of constant versus state-dependent \({\mathbb {P}}\) on disease dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson RM, May RM (1982) Directly transmitted infections diseases: control by vaccination. Science 215:1053–1060

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans. Dynamics and control. Oxford Science Publications, New York

    Google Scholar 

  • Arino J (2009) Diseases in metapopulations. In: Ma Z, Zhou Y, Wu J (eds) Modeling and dynamics of infectious diseases, vol 11. World Scientific, Singapore

  • Arino J, Davis J, Hartley D, Jordan R, Miller J, van den Driessche P (2005) A multi-species epidemic model with spatial dynamics. Math Med Biol 22:129–142

    Article  MATH  Google Scholar 

  • Arino J, van den Driessche P (2003) The basic reproduction number in a multi-city compartmental model. Lecture notes in control and information science, vol 294, pp 135–142

  • Arino J, van den Driessche P (2006) Disease spread in metapopulations. In: Zhao X-O, Zou X (eds) Nonlinear dynamics and evolution equations, vol 48. Fields Institute Communications, AMS, Providence, pp 1–13

    Google Scholar 

  • Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences, vol 9 of classics in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Revised reprint of the 1979 original

  • Bernoulli D (1766) Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, Mem. Math. Phys. Acad. R. Sci. Paris, pp. 1–45

  • Blythe SP, Castillo-Chavez C (1989) Like-with-like preference and sexual mixing models. Math Biosci 96:221–238

    Article  MATH  Google Scholar 

  • Brauer F (2008) Epidemic models with heterogeneous mixing and treatment. Bull Math Biol 70:1869–1885

    Article  MATH  MathSciNet  Google Scholar 

  • Brauer F, Castillo-Chavez C (1994) Basic models in epidemiology. In: Steele J, Powell T (eds) Ecological time series. Raven Press, New York, pp 410–477

    Google Scholar 

  • Brauer F, Castillo-Chávez C (2012) Mathematical models in population biology and epidemiology. In: Marsden JE, Sirovich L, Golubitski M (eds) Applied mathematics, vol 40. Springer, New York

  • Brauer F, Castillo-Chavez C, Velasco-Herná ndez JX (1996) Recruitment effects in heterosexually transmitted disease models. In: Kirschner D (ed) Advances in mathematical modeling of biological processes, vol 3:1. Int J Appl Sci Comput, pp 78–90

  • Brauer F, Feng Z, Castillo-Chavez C (2010) Discrete epidemic models. Math Biosci Eng 7:1–15

    Article  MATH  MathSciNet  Google Scholar 

  • Brauer F, van den Driessche P (2001) Models for transmission of disease with immigration of infectives. Math Biosci 171:143–154

  • Brauer F, van den Driessche P, Wang L (2008) Oscillations in a patchy environment disease model. Math Biosci 215:1–10

    Article  MATH  MathSciNet  Google Scholar 

  • Brauer F, Watmough J (2009) Age of infection epidemic models with heterogeneous mixing. J Biol Dyn 3:324–330

    Article  MathSciNet  Google Scholar 

  • Castillo-Chavez C, Busenberg S (1991) A general solution of the problem of mixing of subpopulations and its application to risk-and age-structured epidemic models for the spread of AIDS. Math Med Biol 8:1–29

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez C, Cooke K, Huang W, Levin SA (1989) Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus. Appl Math Lett 2:327–331

    Article  MATH  Google Scholar 

  • Castillo-Chavez C, Hethcote H, Andreasen V, Levin S, Liu W (1989) Epidemiological models with age structure, proportionate mixing, and cross-immunity. J Math Biol 27:233–258

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez C, Huang W (1999) Age-structured core group modeland its impact on STD dynamics. In Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory (Minneapolis, MN, 1999), vol. 126 of IMA, Math Appl, Springer, New York, 2002, pp. 261–273

  • Castillo-Chavez C, Huang W, Li J (1996) Competitive exclusion in gonorrhea models and other sexually transmitted diseases. SIAM J Appl Math 56:494–508

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez C, Huang W, Li J (1999) Competitive exclusion and coexistence of multiple strains in an SIS STD model. SIAM J Appl Math 59:1790–1811 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez C, Thieme HR (1995) Asymptotically autonomous epidemic models. In: Arino ADE, Kimmel O, Kimmel M (eds) Mathematical population dynamics: analysis of heterogeneity, volume one: theory of epidemics. Wuerz, Winnipeg

    Google Scholar 

  • Castillo-Chavez C, Velasco-Hernández JX, Fridman S (1994) Modeling contact structures in biology. In: Levin SA (ed) Frontiers in mathematical biology, vol 100. Springer, Berlin ch. 454–491

    Chapter  Google Scholar 

  • Chowell D, Castillo-Chavez C, Krishna S, Qiu X, Anderson KS (2015) Modelling the effect of early detection of Ebola. Lancet 15:148–149

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  MATH  MathSciNet  Google Scholar 

  • Dietz K, Heesterbeek J (2002) Daniel Bernoulli’s epidemiological model revisited. Math Biosci 180:1–21

    Article  MATH  MathSciNet  Google Scholar 

  • Dietz K, Schenzle D (1985) Mathematical models for infectious disease statistics. In: Atkinson, Anthony, Fienberg, Stephen E (eds) A celebration of statistics. Springer, New York, pp 167–204

  • Fall A, Iggidr A, Sallet G, Tewa J-J (2007) Epidemiological models and Lyapunov functions. Math Model Nat Phenom 2:62–68

    Article  MathSciNet  Google Scholar 

  • Fenichel E, Castillo-Chavez C, Ceddia MG, Chowell G,Gonzalez Parra P, Hickling GJ, Holloway G, Horan R, Morin B, Perrings C, Springborn M, Valazquez L, Villalobos C (2011) Adaptive human behavior in epidemiological models. PNAS 208(15):6306–6311

  • Guo H, Li M, Shuai Z (2006) Global stability of the endemic equilibrium of multigroup models. Can Appl Math Q 14:259–284

    MATH  MathSciNet  Google Scholar 

  • Guo H, Li M, Shuai Z (2008) A graph-theoretic approach to the method of global Lyapunov functions. Proc Am Math Soc 136(8):2793–2802

  • Hadeler K, Castillo-Chavez C (1995) A core group model for disease transmission. Math Biosci 128:41–55

    Article  MATH  Google Scholar 

  • Heiderich KR, Huang W, Castillo-Chavez C (2002) Nonlocal response in a simple epidemiological model. In: Appli IVM (ed) Mathematical approaches for emerging and reemerging infectious diseases: an introduction, vol 125. Springer, New York, pp 129–151

    Chapter  Google Scholar 

  • Hernandez-Ceron N, Feng Z, Castillo-Chavez C (2013) Discrete epidemic models with arbitrary stage distributions and applications to disease control. Bull Math Biol 75:1716–1746

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote HW (1976) Qualitative analyses of communicable disease models. Math Biosci 28:335–356

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42:599–653 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote HW, Thieme HR (1985) Stability of the endemic equilibrium in epidemic models with subpopulations. Math Biosci 75:205–227

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote HW, Yorke J (1984) Gonorrhea: transmission dynamics and control, vol 56. Lecture notes in biomathematics. Springer

  • Hirsch M (1984) The dynamical system approach to differential equations. Bull AMS 11:1–64

    Article  MATH  Google Scholar 

  • Horan DR, Fenichel EP (2007) Economics and ecology of managing emerging infectious animal diseases. Am J Agric Econ 89:1232–1238

    Article  Google Scholar 

  • Horan DR, Fenichel EP, Melstrom RT (2011) Wildlife disease bioeconomics. Int Rev Environ Resour Econ 5:23–61

    Article  Google Scholar 

  • Horan DR, Fenichel EP, Wolf CA, Graming BM (2010) Managing infectious animal disease systems. Annu Rev Resour Econ 2:101–124

    Article  Google Scholar 

  • Hsu Schmitz S-F (2000a) Effect of treatment or/and vaccination on HIV transmission in homosexual with genetic heterogeneity. Math Biosci 167:1–18

    Article  MATH  Google Scholar 

  • Hsu Schmitz S-F (2000b) A mathematical model of HIV transmission in homosexuals with genetic heterogeneity. J Theor Med 2:285–296

  • Hsu Schmitz S-F (2007) The influence of treatment and vaccination induced changes in the risky contact rate on HIV transmisssion. Math Popul Stud 14:57–76

    Article  MATH  MathSciNet  Google Scholar 

  • Huang W, Cooke K, Castillo-Chavez C (1992) Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J Appl Math 52:835–854

    Article  MATH  MathSciNet  Google Scholar 

  • Huang W, Cooke KL, Castillo-Chavez C (1992) Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J Appl Math 52:835–854

    Article  MATH  MathSciNet  Google Scholar 

  • Hutson V (1984) A theorem on average Lyapunov functions. Monatshefte für Mathematik 98:267–275

    Article  MATH  MathSciNet  Google Scholar 

  • Iggidr A, Sallet G, Tsanou B (2012) Global stability analysis of a metapopulation SIS epidemic model. Math Popul Stud 19:115–129

    Article  MATH  MathSciNet  Google Scholar 

  • Jacquez JA, Simon CP (1993) The stochastic SI model with recruitment and deaths I. Comparison with the closed SIS model. Math Biosci 117:77–125

    Article  MATH  MathSciNet  Google Scholar 

  • Jacquez JA, Simon CP, Koopman J (1991) The reproduction number in deterministic models of contagious diseases. Comment Theor Biol 2:159–209

  • Jacquez JA, Simon CP, Koopman J, Sattenspiel L, Perry T (1988) Modeling and analyzing HIV transmission: the effect of contact patterns. Math Biosci 92:119–199

  • Kuniya T, Muroya Y (2014) Global stability of a multi-group SIS epidemic model for population migration. DCDS Ser B 19(4):1105–1118

  • Lajmanovich A, Yorke J (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Math Biosci 28:221–236

    Article  MATH  MathSciNet  Google Scholar 

  • Lin X, So JW-H (1993) Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations. J Aust Math Soc Ser B 34:282–295

    Article  MATH  MathSciNet  Google Scholar 

  • Morin B, Castillo-Chavez C (2003) SIR dynamics with economically driven contact rates. Nat Resour Model 26:505–525

    Article  MathSciNet  Google Scholar 

  • Mossong J, Hens N, Jit M, Beutels P, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5:381–391

    Article  Google Scholar 

  • Nold A (1980) Heterogeneity in disease-transmission modeling. Math Biosci 52:227

    Article  MATH  MathSciNet  Google Scholar 

  • Perrings C, Castillo-Chavez C, Chowell G, Daszak P, Fenichel EP, Finnoff D, Horan RD, Kilpatrick AM, Kinzig AP, Kuminoff NV, Levin S, Morin B, Smith KF, Springborn M (2014) Merging economics and epidemiology to improve the prediction and management of infectious disease. Ecohealth 11(4):464–475

  • Ross R (1911) The prevention of malaria. John Murray, London

    Google Scholar 

  • Rushton S, Mautner A (1955) The deterministic model of a simple epidemic for more than one community. Biometrika 42(1/2):126–132

  • Sattenspiel L, Dietz K (1995) A structured epidemic model incorporating geographic mobility among regions. Math Biosci 128:71–91

    Article  MATH  Google Scholar 

  • Sattenspiel L, Simon CP (1988) The spread and persistence of infectious diseases in structured populations. Math Biosci 90:341–366 [Nonlinearity in biology and medicine (Los Alamos, NM, 1987)]

    Article  MATH  MathSciNet  Google Scholar 

  • Shuai Z, van den Driessche P (2013) Global stability of infectious disease models using lyapunov functions. SIAM J Appl Math 73:1513–1532

    Article  MATH  MathSciNet  Google Scholar 

  • Simon CP, Jacquez JA (1992) Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations. SIAM J Appl Math 52:541–576

    Article  MATH  MathSciNet  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MATH  MathSciNet  Google Scholar 

  • Velasco-Hernández JX, Brauer F, Castillo-Chavez C (1996) Effects of treatment and prevalence-dependent recruitment on the dynamics of a fatal disease. IMA J Math Appl Med Biol 13:175–192

    Article  MATH  Google Scholar 

  • Vidyasagar M (1980) Decomposition techniques for large-scale systems with nonadditive interactions: stability and stabilizability. IEEE Trans Autom Control 25:773–779

    Article  MATH  MathSciNet  Google Scholar 

  • Yorke JA, Hethcote HW, Nold A (1978) Dynamics and control of the transmission of gonorrhea. Sex Transm Dis 5:51–56

    Article  Google Scholar 

Download references

Acknowledgments

These studies were made possible by grant #1R01GM100471-01 from the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of DHS or NIGMS. Research of Y.K. is partially supported by NSF-DMS (1313312). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors are grateful to two anonymous referees for helpful comments and suggestions which led to an improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Kang.

Appendices

Appendix 1: Computation of \({\mathcal {R}}_0\)

Proof

The general SIS model with residence time is described by the system (6)

$$\begin{aligned} \dot{I}={\text {diag}}(\bar{N}-I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI-{\text {diag}}(d_I+\gamma _I)I. \end{aligned}$$

The right-hand member of the above system can be clearly decomposed as \({\mathcal {F}}+{\mathcal {V}}\) where

$$\begin{aligned} {\mathcal {F}}={\text {diag}}(\bar{N}-I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI \quad {\text {and}}\quad {\mathcal {V}}=-{\text {diag}}(d_I+\gamma _I)I \end{aligned}$$

The Jacobian matrix at the DFE of \({\mathcal {F}}\) and \({\mathcal {V}}\) is given by:

$$\begin{aligned} F=D{\mathcal {F}}\bigg |_{DFE}={\text {diag}}(\bar{N}){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t \quad {\text {and}}\quad V={\mathcal {V}}\bigg |_{DFE}=-{\text {diag}}(d_I+\gamma _I) \end{aligned}$$

The basic reproduction number \({\mathcal {R}}_0\) is given by the spectral radius of the next-generation matrix \(-FV^{-1}\) (Diekmann et al. 1990; Driessche and Watmough 2002). Hence, we deduce that

$$\begin{aligned} {\mathcal {R}}_0=\rho (-{\text {diag}}(\bar{N}){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t V^{-1} ) \end{aligned}$$

\(\square \)

Appendix 2: Proof of Theorem 2.1

The proof uses the method in Iggidr et al. (2012) which is based on Hirsch’s theorem (Hirsch 1984).

Theorem 5.1

(Hirsch 1984) Let \(\dot{x}=F(x)\) be a cooperative differential equation for which \({\mathbb {R}}^n_+\) is invariant , the origin is an equilibrium, each DF(x) is irreducible, and that all orbits are bounded. Suppose that

$$\begin{aligned} x>y\implies DF(x)<DF(y)\quad {\text {for all}}\quad x,y. \end{aligned}$$

Then, all orbits in \({\mathbb {R}}^n_+\) tend to zero or there is a unique equilibrium \(p^*\) in the interior of \({\mathbb {R}}^n_+\) and all orbits in \({\mathbb {R}}^n_+\) tend to \(p^*\).

Proof of Theorem 2.1

Equation (6) can be written as:

$$\begin{aligned} \dot{I}=(F+V)I-{\text {diag}}(I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI \end{aligned}$$
(14)

where \(F=\text {diag}(\bar{N}){\mathbb {P}}\text {diag}({\mathcal {B}})\text {diag}(\tilde{N})^{-1}{\mathbb {P}}^t\) and \(V=-\text {diag}(d_I+\gamma _I)\), as defined in “Appendix 1.” Let us denote by X(I) the semi-flow induced by (14). Hence,

$$\begin{aligned} DX(I)={\text {diag}}(\bar{N}-I) {\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t+V-W(I_1,I_2) \end{aligned}$$
(15)

where \(W(I_1,I_2)={\text {diag}}({\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t I)\). Since \({\mathbb {P}}\) is irreducible and \(I\le \bar{N}\), DX(I) is clearly Metzler irreducible matrix. That means, the flow is strongly monotone. Plus, DX(I) is clearly decreasing with respect of I. Hence, by Hirsch’s theorem all trajectories either go to zero or go to an equilibrium point \(\bar{I}\gg 0\). From the relation (15), we have \(DX(0)=F+V\) where F and V are the one defined previously in “Appendix 1.” However, since F a nonnegative matrix and V is Metzler, we have the following equivalence

$$\begin{aligned} \alpha (F+V)<0\iff \rho (-FV^{-1})<1 \end{aligned}$$

where \(\alpha (F+V)\) is the stability modulus, i.e., the largest real part of eigenvalues, of \(F+V\) and \(\rho (-FV^{-1})\) the spectral radius of \(-FV^{-1}\). Hence, the DFE is globally asymptotically stable if \({\mathcal {R}}_0=\rho (-FV^{-1})<1\). And if \({\mathcal {R}}_0>1\), i.e., \(\alpha (F+V)>0\), the DFE is unstable (Driessche and Watmough 2002). Since, we have proved that DX(I) is a Metzler matrix, to prove the local stability of the endemic equilibrium \(\bar{I}\gg 0\), we only need to prove that it exists \(w\gg 0\) such that \(DX(\bar{I})w<0\) (Berman and Plemmons 1994). The endemic equilibrium \(\bar{I}\gg 0\) satisfies the equation

$$\begin{aligned} (F+V)\bar{I}-{\text {diag}}(\bar{I}){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t\bar{I}=0 \end{aligned}$$

Hence,

$$\begin{aligned} DX(\bar{I})\bar{I}=-W(\bar{I})\bar{I}<0 \end{aligned}$$

Hence, with \(w=\bar{I}\), we deduce that \(\bar{I}\) is locally stable. With the attractivity of \(\bar{I}\) guaranteed Hirsh’s theorem, we conclude that the endemic equilibrium \(\bar{I}\gg 0\) is globally asymptotically stable if \({\mathcal {R}}_0>1\).

Finally, if \({\mathcal {R}}_0=1\), we have \(\alpha (F+V)=0\). It exists \(c\gg 0\) such that \((F+V)^tc=0\). By considering the Lyapunov function \(V=\left\langle c |I\right\rangle \). This function is definite positive and its derivation along the trajectories if (14) is

$$\begin{aligned} \dot{V}= & {} \left\langle c |\dot{I}\right\rangle \nonumber \\= & {} \left\langle c |(F+V)I-{\text {diag}}(I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI\right\rangle \nonumber \\= & {} -\left\langle c |{\text {diag}}(I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI\right\rangle \nonumber \\\le & {} 0 \end{aligned}$$
(16)

Plus \(\dot{V}=0\) only at the DFE. Hence, the DFE is GAS if \({\mathcal {R}}_0=1\). This completes the proof of the Theorem 2.1. \(\square \)

Appendix 3: Proof of Theorem 2.2

Proof

Since System (6) has an attracting compact \(\Omega \), then according to Theorem (2.1), we can expect that \(\lim _{t\rightarrow \infty } I_i(t)<\frac{b_i}{d_i}\); thus, for time large enough, we can have \(\frac{b_i}{d_i}-I_i>0\), therefore we have

$$\begin{aligned} \dot{I}_i>I_i\left( \frac{b_i}{d_i}-I_i\right) \left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}\right) -(d_i+\gamma _i )I_i \end{aligned}$$

which indicates that when \({\mathcal {R}}_0^i({\mathbb {P}})>1 \)

$$\begin{aligned} \frac{\dot{I}_i}{I_i}\big \vert _{I_i=0}= & {} \frac{b_i}{d_i}\left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}\right) -(d_i+\gamma _i )>0. \end{aligned}$$

Then apply the average Lyapunov Theorem (Hutson 1984), we can conclude that \(\liminf _{t\rightarrow \infty } I_i(t)>0\); i.e., the disease in the residence Patch i is persistent if \({\mathcal {R}}_0^i({\mathbb {P}})>1 \) .

If \(p_{ij}>0\) and \(p_{kj}=0\) for all \(k=1,\ldots ,n, \text{ and } k\ne i\), this implies that if there is a portion of the residence Patch i population flowing into the residence Patch j, then there is no other residence Patch k where \(k\ne j\), i.e.,

$$\begin{aligned} \beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k=0 \end{aligned}$$

which also implies that

$$\begin{aligned} \left( \frac{b_i}{d_i}-I_i\right) \sum _{j=1}^{n}\frac{\beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}} =0. \end{aligned}$$

then we can conclude that Model (6) can have an equilibrium since under these conditions,

$$\begin{aligned} \frac{b_i}{d_i}\sum _{j=1}^{n}\frac{\beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}=\frac{b_i}{d_i}\frac{\beta _i \sum _{k=1,k\ne i}^{n}p_{ki}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}} =0. \end{aligned}$$

Therefore, if the conditions \(p_{kj}=0\) for all \(k=1,\ldots ,n, \text{ and } k\ne j\) whenever \(p_{ij}>0\) hold, then we have

$$\begin{aligned} \dot{I}_i\vert _{I_i=0}= & {} \left[ I_i\left( \frac{b_i}{d_i}-I_i\right) \left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}\right) \right. \nonumber \\&\qquad \left. +\left( \frac{b_i}{d_i}-I_i\right) \sum _{j=1}^{n}\frac{\beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}} -(d_i+\gamma _i )I_i \right] \bigg \vert _{I_i=0} \\= & {} \frac{b_i}{d_i}\sum _{j=1}^{n}\frac{\beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}=0. \end{aligned}$$

Therefore, \(I_i=0\) is the invariant manifold for Model (6).

On the other hand, when these conditions hold, then we have

$$\begin{aligned} {\mathcal {R}}_0^i({\mathbb {P}})=R_0^i \times \sum _{j=1}^n\left( \frac{\beta _j}{\beta _i}\right) p_{ij}\left( \frac{\left( p_{ij} \frac{b_i}{d_i}\right) }{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}\right) =R_0^i \times \sum _{j=1}^n \left( \frac{\beta _j}{\beta _i}\right) p_{ij}. \end{aligned}$$

Therefore, if \({\mathcal {R}}_0^i({\mathbb {P}})=R_0^i \times \sum _{j=1}^n \left( \frac{\beta _j}{\beta _i}\right) p_{ij}<1\), then we have the following inequality:

$$\begin{aligned} \frac{\dot{I}_i}{I_i}= & {} I_i\left( \frac{b_i}{d_i}-I_i\right) \left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{ki}\frac{b_k}{d_k}}\right) -(d_i+\gamma _i )I_i\\\le & {} I_i \left[ \frac{b_i}{d_i}\left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{ki}\frac{b_k}{d_k}}\right) -(d_i+\gamma _i )\right] \\= & {} I_i \left[ \sum _{j=1}^{n}\beta _jp_{ij}-(d_i+\gamma _i )\right] <0. \end{aligned}$$

Therefore, we have \(\lim _{t\rightarrow \infty } I_i(t)=0\); i.e., there is no endemic in the residence Patch i. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bichara, D., Kang, Y., Castillo-Chavez, C. et al. SIS and SIR Epidemic Models Under Virtual Dispersal. Bull Math Biol 77, 2004–2034 (2015). https://doi.org/10.1007/s11538-015-0113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0113-5

Keywords

Mathematics Subject Classfication

Navigation