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                    Abstract
We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is a function of the residence time and local environmental risk. This novel approach eliminates the need to define and measure contact rates that are used in the traditional multi-group epidemic models with heterogeneous mixing. We apply this approach to a general n-patch SIS model whose basic reproduction number \({\mathcal {R}}_0 \) is computed as a function of a patch residence-time matrix \({\mathbb {P}}\). Our analysis implies that the resulting n-patch SIS model has robust dynamics when patches are strongly connected: There is a unique globally stable endemic equilibrium when \({\mathcal {R}}_0>1 \), while the disease-free equilibrium is globally stable when \({\mathcal {R}}_0\le 1 \). Our further analysis indicates that the dispersal behavior described by the residence-time matrix \({\mathbb {P}}\) has profound effects on the disease dynamics at the single patch level with consequences that proper dispersal behavior along with the local environmental risk can either promote or eliminate the endemic in particular patches. Our work highlights the impact of residence-time matrix if the patches are not strongly connected. Our framework can be generalized in other endemic and disease outbreak models. As an illustration, we apply our framework to a two-patch SIR single-outbreak epidemic model where the process of disease invasion is connected to the final epidemic size relationship. We also explore the impact of disease-prevalence-driven decision using a phenomenological modeling approach in order to contrast the role of constant versus state-dependent \({\mathbb {P}}\) on disease dynamics.
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Appendices
Appendix 1: Computation of \({\mathcal {R}}_0\)
                        

                  
                    Proof
                  

                  The general SIS model with residence time is described by the system (6)
$$\begin{aligned} \dot{I}={\text {diag}}(\bar{N}-I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI-{\text {diag}}(d_I+\gamma _I)I. \end{aligned}$$

The right-hand member of the above system can be clearly decomposed as \({\mathcal {F}}+{\mathcal {V}}\) where
$$\begin{aligned} {\mathcal {F}}={\text {diag}}(\bar{N}-I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI \quad {\text {and}}\quad {\mathcal {V}}=-{\text {diag}}(d_I+\gamma _I)I \end{aligned}$$

The Jacobian matrix at the DFE of \({\mathcal {F}}\) and \({\mathcal {V}}\) is given by:
$$\begin{aligned} F=D{\mathcal {F}}\bigg |_{DFE}={\text {diag}}(\bar{N}){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t \quad {\text {and}}\quad V={\mathcal {V}}\bigg |_{DFE}=-{\text {diag}}(d_I+\gamma _I) \end{aligned}$$

The basic reproduction number \({\mathcal {R}}_0\) is given by the spectral radius of the next-generation matrix \(-FV^{-1}\) (Diekmann et al. 1990; Driessche and Watmough 2002). Hence, we deduce that
$$\begin{aligned} {\mathcal {R}}_0=\rho (-{\text {diag}}(\bar{N}){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t V^{-1} ) \end{aligned}$$


                              \(\square \)
                           

                Appendix 2: Proof of Theorem 2.1
                        
The proof uses the method in Iggidr et al. (2012) which is based on Hirsch’s theorem (Hirsch 1984).

                  
                    Theorem 5.1
                  

                  (Hirsch 1984) Let \(\dot{x}=F(x)\) be a cooperative differential equation for which \({\mathbb {R}}^n_+\) is invariant , the origin is an equilibrium, each DF(x) is irreducible, and that all orbits are bounded. Suppose that
$$\begin{aligned} x>y\implies DF(x)<DF(y)\quad {\text {for all}}\quad x,y. \end{aligned}$$

Then, all orbits in \({\mathbb {R}}^n_+\) tend to zero or there is a unique equilibrium \(p^*\) in the interior of \({\mathbb {R}}^n_+\) and all orbits in \({\mathbb {R}}^n_+\) tend to \(p^*\).

                
                  
                    Proof of Theorem 2.1
                  

                  Equation (6) can be written as:
$$\begin{aligned} \dot{I}=(F+V)I-{\text {diag}}(I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI \end{aligned}$$

                    (14)
                

where \(F=\text {diag}(\bar{N}){\mathbb {P}}\text {diag}({\mathcal {B}})\text {diag}(\tilde{N})^{-1}{\mathbb {P}}^t\) and \(V=-\text {diag}(d_I+\gamma _I)\), as defined in “Appendix 1.” Let us denote by X(I) the semi-flow induced by (14). Hence,
$$\begin{aligned} DX(I)={\text {diag}}(\bar{N}-I) {\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t+V-W(I_1,I_2) \end{aligned}$$

                    (15)
                

where \(W(I_1,I_2)={\text {diag}}({\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t I)\). Since \({\mathbb {P}}\) is irreducible and \(I\le \bar{N}\), DX(I) is clearly Metzler irreducible matrix. That means, the flow is strongly monotone. Plus, DX(I) is clearly decreasing with respect of I. Hence, by Hirsch’s theorem all trajectories either go to zero or go to an equilibrium point \(\bar{I}\gg 0\). From the relation (15), we have \(DX(0)=F+V\) where F and V are the one defined previously in “Appendix 1.” However, since F a nonnegative matrix and V is Metzler, we have the following equivalence
$$\begin{aligned} \alpha (F+V)<0\iff \rho (-FV^{-1})<1 \end{aligned}$$

where \(\alpha (F+V)\) is the stability modulus, i.e., the largest real part of eigenvalues, of \(F+V\) and \(\rho (-FV^{-1})\) the spectral radius of \(-FV^{-1}\). Hence, the DFE is globally asymptotically stable if \({\mathcal {R}}_0=\rho (-FV^{-1})<1\). And if \({\mathcal {R}}_0>1\), i.e., \(\alpha (F+V)>0\), the DFE is unstable (Driessche and Watmough 2002). Since, we have proved that DX(I) is a Metzler matrix, to prove the local stability of the endemic equilibrium \(\bar{I}\gg 0\), we only need to prove that it exists \(w\gg 0\) such that \(DX(\bar{I})w<0\) (Berman and Plemmons 1994). The endemic equilibrium \(\bar{I}\gg 0\) satisfies the equation
$$\begin{aligned} (F+V)\bar{I}-{\text {diag}}(\bar{I}){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^t\bar{I}=0 \end{aligned}$$

Hence,
$$\begin{aligned} DX(\bar{I})\bar{I}=-W(\bar{I})\bar{I}<0 \end{aligned}$$

Hence, with \(w=\bar{I}\), we deduce that \(\bar{I}\) is locally stable. With the attractivity of \(\bar{I}\) guaranteed Hirsh’s theorem, we conclude that the endemic equilibrium \(\bar{I}\gg 0\) is globally asymptotically stable if \({\mathcal {R}}_0>1\).

                  Finally, if \({\mathcal {R}}_0=1\), we have \(\alpha (F+V)=0\). It exists \(c\gg 0\) such that \((F+V)^tc=0\). By considering the Lyapunov function \(V=\left\langle c |I\right\rangle \). This function is definite positive and its derivation along the trajectories if (14) is
$$\begin{aligned} \dot{V}= & {} \left\langle c |\dot{I}\right\rangle \nonumber \\= & {} \left\langle c |(F+V)I-{\text {diag}}(I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI\right\rangle \nonumber \\= & {} -\left\langle c |{\text {diag}}(I){\mathbb {P}}{\text {diag}}({\mathcal {B}}){\text {diag}}(\tilde{N})^{-1}{\mathbb {P}}^tI\right\rangle \nonumber \\\le & {} 0 \end{aligned}$$

                    (16)
                

Plus \(\dot{V}=0\) only at the DFE. Hence, the DFE is GAS if \({\mathcal {R}}_0=1\). This completes the proof of the Theorem 2.1. \(\square \)
                           

                Appendix 3: Proof of Theorem 2.2
                        

                  
                    Proof
                  

                  Since System (6) has an attracting compact \(\Omega \), then according to Theorem (2.1), we can expect that \(\lim _{t\rightarrow \infty } I_i(t)<\frac{b_i}{d_i}\); thus, for time large enough, we can have \(\frac{b_i}{d_i}-I_i>0\), therefore we have
$$\begin{aligned} \dot{I}_i>I_i\left( \frac{b_i}{d_i}-I_i\right) \left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}\right) -(d_i+\gamma _i )I_i \end{aligned}$$

which indicates that when \({\mathcal {R}}_0^i({\mathbb {P}})>1 \)
                              
$$\begin{aligned} \frac{\dot{I}_i}{I_i}\big \vert _{I_i=0}= & {} \frac{b_i}{d_i}\left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}\right) -(d_i+\gamma _i )>0. \end{aligned}$$

Then apply the average Lyapunov Theorem (Hutson 1984), we can conclude that \(\liminf _{t\rightarrow \infty } I_i(t)>0\); i.e., the disease in the residence Patch i is persistent if \({\mathcal {R}}_0^i({\mathbb {P}})>1 \) .

                  If \(p_{ij}>0\) and \(p_{kj}=0\) for all \(k=1,\ldots ,n, \text{ and } k\ne i\), this implies that if there is a portion of the residence Patch i population flowing into the residence Patch j, then there is no other residence Patch k where \(k\ne j\), i.e.,
$$\begin{aligned} \beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k=0 \end{aligned}$$

which also implies that
$$\begin{aligned} \left( \frac{b_i}{d_i}-I_i\right) \sum _{j=1}^{n}\frac{\beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}} =0. \end{aligned}$$

then we can conclude that Model (6) can have an equilibrium since under these conditions,
$$\begin{aligned} \frac{b_i}{d_i}\sum _{j=1}^{n}\frac{\beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}=\frac{b_i}{d_i}\frac{\beta _i \sum _{k=1,k\ne i}^{n}p_{ki}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}} =0. \end{aligned}$$

Therefore, if the conditions \(p_{kj}=0\) for all \(k=1,\ldots ,n, \text{ and } k\ne j\) whenever \(p_{ij}>0\) hold, then we have
$$\begin{aligned} \dot{I}_i\vert _{I_i=0}= & {} \left[ I_i\left( \frac{b_i}{d_i}-I_i\right) \left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}\right) \right. \nonumber \\&\qquad \left. +\left( \frac{b_i}{d_i}-I_i\right) \sum _{j=1}^{n}\frac{\beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}} -(d_i+\gamma _i )I_i \right] \bigg \vert _{I_i=0} \\= & {} \frac{b_i}{d_i}\sum _{j=1}^{n}\frac{\beta _jp_{ij}\sum _{k=1,k\ne i}^{n}p_{kj}I_k}{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}=0. \end{aligned}$$

Therefore, \(I_i=0\) is the invariant manifold for Model (6).

                  On the other hand, when these conditions hold, then we have
$$\begin{aligned} {\mathcal {R}}_0^i({\mathbb {P}})=R_0^i \times \sum _{j=1}^n\left( \frac{\beta _j}{\beta _i}\right) p_{ij}\left( \frac{\left( p_{ij} \frac{b_i}{d_i}\right) }{\sum _{k=1}^{n}p_{kj}\frac{b_k}{d_k}}\right) =R_0^i \times \sum _{j=1}^n \left( \frac{\beta _j}{\beta _i}\right) p_{ij}. \end{aligned}$$

Therefore, if \({\mathcal {R}}_0^i({\mathbb {P}})=R_0^i \times \sum _{j=1}^n \left( \frac{\beta _j}{\beta _i}\right) p_{ij}<1\), then we have the following inequality:
$$\begin{aligned} \frac{\dot{I}_i}{I_i}= & {} I_i\left( \frac{b_i}{d_i}-I_i\right) \left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{ki}\frac{b_k}{d_k}}\right) -(d_i+\gamma _i )I_i\\\le & {} I_i \left[ \frac{b_i}{d_i}\left( \sum _{j=1}^{n}\frac{\beta _jp_{ij}^2}{\sum _{k=1}^{n}p_{ki}\frac{b_k}{d_k}}\right) -(d_i+\gamma _i )\right] \\= & {} I_i \left[ \sum _{j=1}^{n}\beta _jp_{ij}-(d_i+\gamma _i )\right] <0. \end{aligned}$$

Therefore, we have \(\lim _{t\rightarrow \infty } I_i(t)=0\); i.e., there is no endemic in the residence Patch i. \(\square \)
                           

                

Rights and permissions
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Bichara, D., Kang, Y., Castillo-Chavez, C. et al. SIS and SIR Epidemic Models Under Virtual Dispersal.
                    Bull Math Biol 77, 2004–2034 (2015). https://doi.org/10.1007/s11538-015-0113-5
Download citation
	Received: 18 February 2015

	Accepted: 02 October 2015

	Published: 21 October 2015

	Issue Date: November 2015

	DOI: https://doi.org/10.1007/s11538-015-0113-5


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Epidemiology
	SIS–SIR models
	Dispersal
	Residence times
	Global stability
	Adaptive behavior
	Final size relationship

Mathematics Subject Classfication
	Primary 34D23
	92D25
	60K35








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					3.231.229.83
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature




	






    