Skip to main content

Advertisement

Log in

Epidemic Models with Heterogeneous Mixing and Treatment

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a two-group epidemic model with treatment and establish a final size relation that gives the extent of the epidemic. This relation can be established with arbitrary mixing between the groups even though it may not be feasible to determine the reproduction number for the model. If the mixing of the two groups is proportionate, there is an explicit expression for the reproductive number and the final size relation is expressible in terms of the components of the reproduction number. We also extend the results to a two-group influenza model with proportionate mixing. Some numerical simulations suggest that (i) the assumption of no disease deaths is a good approximation if the disease death rate is small and (ii) a one-group model is a close approximation to a two-group model but a two-group model is necessary for comparing targeted treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arino, J., Brauer, F., van den Driessche, P., Watmough, J., Wu, J., 2006. Simple models for containment of a pandemic. J. R. Soc. Interface 3, 453–57.

    Article  Google Scholar 

  • Arino, J., Brauer, F., van den Driessche, P., Watmough, J., Wu, J., 2007. A final size relation for epidemic models. Math. Biosci. Eng. 4, 159–76.

    MATH  MathSciNet  Google Scholar 

  • Arino, J., Brauer, F., van den Driessche, P., Watmough, J., Wu, J., 2008. A model for influenza with vaccination and antiviral treatment. Math. Biosci. Eng. 5, 118–30.

    Google Scholar 

  • Bansal, S., Pourbohloul, B., Meyers, L.A., 2006. A comparative analysis of influenza vaccination programs. PLoS Med. 3, 1816–825.

    Article  Google Scholar 

  • Brauer, F., 2005. The Kermack-McKendrick epidemic model revisited. Math. Biosci. 198, 119–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester.

    Google Scholar 

  • Duerr, H.P., Brockmann, S.O., Piechotowski, I., Schwenn, M., Eichner, M., 2007. Influenza pandemic intervention planning using InfluSim: pharmaceutical and non-pharmaceutical interventions. BMC Infect. Dis. 7, 76–0.

    Article  Google Scholar 

  • Dushoff, J., Plotkin, J.B., Viboud, C., Simonsen, L., Miller, M., Loeb, M., Earn, D.J.D., 2007. Vaccinating to protect a vulnerable subpopulation. PLoS Med. 4, 921–27.

    Article  Google Scholar 

  • Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S., 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209–14.

    Article  Google Scholar 

  • Gani, R., Hughes, H., Griffin, T., Medlock, J., Leach, S., 2005. Potential impact of antiviral use on hospitalizations during influenza pandemic. Emerg. Infect. Dis. 11, 1355–362.

    Google Scholar 

  • Longini, I.M., Halloran, M.E., 2005. Strategy for distribution of influenza vaccine to high-risk groups and children. Am. J. Epidem. 161, 303–06.

    Article  Google Scholar 

  • Longini, I.M., Halloran, M.E., Nizam, A., Yang, Y., 2004. Containing pandemic influenza with antiviral agents. Am. J. Epidem. 159, 623–33.

    Article  Google Scholar 

  • Longini, I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A.T., Halloran, M.E., 2005. Containing pandemic influenza at the source. Science 309, 1083–087.

    Article  Google Scholar 

  • Ma, J., Earn, D.J.D., 2006. Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol. 68, 679–02.

    Article  MathSciNet  Google Scholar 

  • Meyers, L.A., 2007. Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. Bull. Am. Math. Soc. 44, 63–6.

    Article  MATH  MathSciNet  Google Scholar 

  • Nold, A., 1980. Heterogeneity in disease transmission modeling. Math. Biosci. 52, 227–40.

    Article  MATH  MathSciNet  Google Scholar 

  • Nuño, M., Chowell, G., Gumel, A.B., 2007. Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands. J. R. Soc. Interface 4, 505–21.

    Article  Google Scholar 

  • van den Driessche, P., Watmough, J., 2002. Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–8.

    Article  MATH  MathSciNet  Google Scholar 

  • Welliver, R., Monto, A.S., Carewicz, O., Schatteman, E., Hassman M, M., Hedrick, J., Jackson, H.C., Huson, L., Ward, P., Oxford, J.S., 2001. Effectiveness of oseltamivir in preventing influenza in household contacts: a randomized controlled trial. JAMA 285, 748–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Brauer.

Additional information

This research was supported by MITACS and an NSERC Research Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauer, F. Epidemic Models with Heterogeneous Mixing and Treatment. Bull. Math. Biol. 70, 1869–1885 (2008). https://doi.org/10.1007/s11538-008-9326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9326-1

Keywords

Navigation