Skip to main content
Log in

A Nonlocal Model for Contact Attraction and Repulsion in Heterogeneous Cell Populations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Instructing others to move is fundamental for many populations, whether animal or cellular. In many instances, these commands are transmitted by contact, such that an instruction is relayed directly (e.g. by touch) from signaller to receiver: for cells, this can occur via receptor–ligand mediated interactions at their membranes, potentially at a distance if a cell extends long filopodia. Given that commands ranging from attractive to repelling can be transmitted over variable distances and between cells of the same (homotypic) or different (heterotypic) type, these mechanisms can clearly have a significant impact on the organisation of a tissue. In this paper, we extend a system of nonlocal partial differential equations (integrodifferential equations) to provide a general modelling framework to explore these processes, performing linear stability and numerical analyses to reveal its capacity to trigger the self-organisation of tissues. We demonstrate the potential of the framework via two illustrative applications: the contact-mediated dispersal of neural crest populations and the self-organisation of pigmentation patterns in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In fact the size of this total signal also varies with the space dimension \(n\), since the integral of \(\tilde{\Omega }\) is along a single ray but the cell signals along all rays. For simplicity we assume the parameter \(\mu \) implicitly incorporates this dimensional dependency—here we generally restrict to one dimension.

  2. In the numerics, we initially apply a small random perturbation to the uniform steady state value at each spatial grid point: set \(u(x_i,0) = U + \varepsilon (x_i)\) for \(i = 1\ldots N_x\), where \(N_x\) defines the number of spatial grid points in the discretisation. \(\varepsilon (x_i)\) is initially sampled from a uniform distribution in a range \(\pm 1\%U\) and subsequently normalised to ensure \(\frac{1}{N_x} \sum _{i=1}^{N_x} u(x_i,0) = U\).

References

  • Abercrombie M, Heaysman JEM (1953) Observations on the social behaviour of cells in tissue culture: I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp Cell Res 5:111–131

    Article  Google Scholar 

  • Agnew DJG, Green JEF, Brown TM, Simpson MJ, Binder BJ (2014) Distinguishing between mechanisms of cell aggregation using pair-correlation functions. J Theor Biol 352:16–23

    Article  MathSciNet  Google Scholar 

  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2013) Essential cell biology. Garland Science

  • Andasari V, Gerisch A, Lolas G, South AP, Chaplain MAJ (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63:141–171

    Article  MathSciNet  MATH  Google Scholar 

  • Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell–cell adhesion. J Theor Biol 243:98–113

    Article  MathSciNet  Google Scholar 

  • Armstrong NJ, Painter KJ, Sherratt JA (2009) Adding adhesion to a chemical signaling model for somite formation. Bull Math Biol 71:1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Asai R, Taguchi E, Kume Y, Saito M, Kondo S (1999) Zebrafish leopard gene as a component of the putative reaction-diffusion system. Mech Dev 89:87–92

    Article  Google Scholar 

  • Bertozzi AL, Carrillo JA, Laurent T (2009) Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22(3):683–710

    Article  MathSciNet  MATH  Google Scholar 

  • Buttenschoen A, Hillen T, Painter KJ (2015) A space-jump derivation for non-local models of chemotaxis and cell–cell adhesion. In preparation

  • Byrne HM, Chaplain MAJ (1996) Modelling the role of cell–cell adhesion in the growth and development of carcinomas. Math Comput Model 24:1–17

    Article  MATH  Google Scholar 

  • Caicedo-Carvajal CE, Shinbrot T (2008) In silico zebrafish pattern formation. Dev Biol 315:397–403

    Article  Google Scholar 

  • Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R (2008) Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456:957–961

    Article  Google Scholar 

  • Carrillo JA, Eftimie R, Hoffmann KO (2014) Non-local kinetic and macroscopic models for self-organised animal aggregations. Submitted (http://arxiv.org/abs/1407.2099)

  • Chaplain MAJ, Lachowicz M, Szymańska Z, Wrzosek D (2011) Mathematical modelling of cancer invasion: the importance of cell–cell adhesion and cell–matrix adhesion. Math Models Methods Appl Sci 21:719–743

    Article  MathSciNet  MATH  Google Scholar 

  • Chauviere A, Hatzikirou H, Kevrekidis IG, Lowengrub JS, Cristini V (2012) Dynamic density functional theory of solid tumor growth: preliminary models. AIP Adv 2:011210

    Article  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11

    Article  MathSciNet  Google Scholar 

  • Diekmann O (1978) Thresholds and travelling waves for the geographical spread of infection. J Math Biol 6:109–130

    Article  MathSciNet  MATH  Google Scholar 

  • Dyson J, Gourley SA, Villella-Bressan R, Webb GF (2010) Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell–cell adhesion. SIAM J Math Anal 42:1784–1804

    Article  MathSciNet  MATH  Google Scholar 

  • Dyson J, Gourley SA, Webb GF (2013) A non-local evolution equation model of cell–cell adhesion in higher dimensional space. J Biol Dyn 7:68–87

    Article  MathSciNet  Google Scholar 

  • Edelstein-Keshet L, Ermentrout GB (1990) Models for contact-mediated pattern formation: cells that form parallel arrays. J Math Biol 29:33–58

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie R, De Vries G, Lewis MA (2007) Complex spatial group patterns result from different animal communication mechanisms. Proc Natl Acad Sci USA 104:6974–6979

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie R, de Vries G, Lewis MA (2009) Weakly nonlinear analysis of a hyperbolic model for animal group formation. J Math Biol 59:37–74

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie R, de Vries G, Lewis MA, Lutscher F (2007) Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull Math Biol 69:1537–1565

    Article  MathSciNet  MATH  Google Scholar 

  • Etchevers HC, Amiel J, Lyonnet S (2005) Molecular bases of human neurocristopathies. Eurekah Biosci 1:415–426

    Google Scholar 

  • Frohnhöfer HG, Krauss J, Maischein H-M, Nüsslein-Volhard C (2013) Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish. Development 140:2997–3007

  • Gerisch A (2010) On the approximation and efficient evaluation of integral terms in pde models of cell adhesion. IMA J Numer Anal 30:173–194

    Article  MathSciNet  MATH  Google Scholar 

  • Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250:684–704

    Article  MathSciNet  Google Scholar 

  • Gerisch A, Painter KJ (2010) Mathematical modelling of cell adhesion and its applications to developmental biology and cancer invasion, chap 12. In: Chauvière A, Preziosi L, Verdier C (eds) Cell Mechanics: from single scale-based models to multiscale modeling. Chapman & Hall/CRC

  • Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47:2128

    Article  Google Scholar 

  • Gradilla AC, Guerrero I (2013) Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res 352:59–66

    Article  Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended potts model. Phys Rev Lett 69:2013

    Article  Google Scholar 

  • Green JEF, Waters SL, Whiteley JP, Edelstein-Keshet L, Shakesheff KM, Byrne HM (2010) Non-local models for the formation of hepatocyte-stellate cell aggregates. J Theor Biol 267:106–120

    Article  MathSciNet  Google Scholar 

  • Hackett-Jones EJ, Landman KA, Fellner K (2012) Aggregation patterns from nonlocal interactions: discrete stochastic and continuum modeling. Phys Rev E 85(4):041912

    Article  Google Scholar 

  • Hackett-Jones EJ, Landman KA, Newgreen DF, Zhang D (2011) On the role of differential adhesion in gangliogenesis in the enteric nervous system. J Theor Biol 287:148–159

    Article  Google Scholar 

  • Hamada H, Watanabe M, Lau HE, Nishida T, Hasegawa T, Parichy DM, Kondo S (2014) Involvement of delta/notch signaling in zebrafish adult pigment stripe patterning. Development 141:318–324

    Article  Google Scholar 

  • Hillen T, Painter K, Schmeiser C (2007) Global existence for chemotaxis with finite sampling radius. Discrete Contin Dyn Syst B 7:125

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2013) Transport and anisotropic diffusion models for movement in oriented habitats. In: Dispersal, individual movement and spatial ecology, pp 177–222

  • Hughes BD, Fellner K (2013) Continuum models of cohesive stochastic swarms: the effect of motility on aggregation patterns. Phys D 260:26–48

    Article  MathSciNet  Google Scholar 

  • Kim Y, Lawler S, Nowicki MO, Chiocca EA, Friedman A (2009) A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J Theor Biol 260:359–371

    Article  MathSciNet  Google Scholar 

  • Kolokolnikov T, Carrillo JA, Bertozzi A, Fetecau R, Lewis M (2013) Emergent behaviour in multi-particle systems with non-local interactions. Phys D 260:1–4

    Article  MathSciNet  Google Scholar 

  • Kornberg TB, Roy S (2014) Cytonemes as specialized signaling filopodia. Development 141:729–736

    Article  Google Scholar 

  • Kulesa PM, Fraser SE (1998) Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant cultures. Dev Biol 204:327–344

    Article  Google Scholar 

  • Le Douarin N, Kalcheim C (1999) The neural crest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lee CT, Hoopes MF, Diehl J, Gilliland W, Huxel G, Leaver EV, McCann K, Umbanhowar J, Mogilner A (2001) Non-local concepts and models in biology. J Theor Biol 210:201–219

    Article  Google Scholar 

  • Maderspacher F, Nüsslein-Volhard C (2003) Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions. Development 130:3447–3457

    Article  Google Scholar 

  • Major PF (1978) Predator-prey interactions in two schooling fishes, caranx ignobilis and stolephorus purpureus. Anim Behav 26:760–777

    Article  Google Scholar 

  • Merchant SM, Nagata W (2011) Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition. Theor Popul Biol 80:289–297

    Article  MATH  Google Scholar 

  • Middleton AM, Fleck C, Grima R (2014) A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion. J Theor Biol 359:220–232

    Article  MathSciNet  Google Scholar 

  • Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38:534–570

    Article  MathSciNet  MATH  Google Scholar 

  • Mollison D (1977) Spatial contact models for ecological and epidemic spread. J R Stat Soc B 39:283–326

  • Murray JD (2002) Mathematical biology I: an introduction. Springer, New York

    MATH  Google Scholar 

  • Nagata W, Merchant S (2014) Selection and stability of wave trains behind predator invasions in a model with nonlocal prey competition. IMA J Appl Math. doi:10.1093/imamat/hxu048

  • Nakamasu A, Takahashi G, Kanbe A, Kondo S (2009) Interactions between zebrafish pigment cells responsible for the generation of turing patterns. Proc Natl Acad Sci USA 106(21):8429–8434

    Article  Google Scholar 

  • Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62:1222–1250

    Article  MathSciNet  MATH  Google Scholar 

  • Painter KJ (2009) Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis. Bull Math Biol 71:1117–1147

    Article  MathSciNet  MATH  Google Scholar 

  • Painter KJ, Hillen T (2002) Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Quart 10:501–543

    MathSciNet  MATH  Google Scholar 

  • Painter KJ, Sherratt JA (2003) Modelling the movement of interacting cell populations. J Theor Biol 225:327–339

    Article  MathSciNet  Google Scholar 

  • Painter KJ, Armstrong NJ, Sherratt JA (2010) The impact of adhesion on cellular invasion processes in cancer and development. J Theor Biol 264:1057–1067

    Article  MathSciNet  Google Scholar 

  • Painter KJ, Hillen T (2011) Spatio-temporal chaos in a chemotaxis model. Phys D 240:363–375

    Article  MATH  Google Scholar 

  • Palsson E, Othmer HG (2000) A model for individual and collective cell movement in dictyostelium discoideum. Proc Natl Acad Sci USA 97:10448–10453

    Article  Google Scholar 

  • Palsson E (2008) A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems. J Theor Biol 254:1–13

    Article  MathSciNet  Google Scholar 

  • Parichy DM, Turner JM (2003) Temporal and cellular requirements for fms signalling during zebrafish adult pigment pattern development. Development 130:817–833

    Article  Google Scholar 

  • Patterson LB, Parichy DM (2013) Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation. PLOS Genetics 9:e1003561

    Article  Google Scholar 

  • Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1996) Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16:209–221

    Google Scholar 

  • Poliakov A, Cotrina M, Wilkinson DG (2004) Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 7:465–480

    Article  Google Scholar 

  • Potts JR, Mokross K, Lewis MA (2014) A unifying framework for quantifying the nature of animal interactions. J R Soc Interface 11:20140333

    Article  Google Scholar 

  • Ramírez-Weber F, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in drosophila imaginal discs. Cell 97:599–607

    Article  Google Scholar 

  • Ramis-Conde I, Chaplain MAJ, Anderson ARA, Drasdo D (2009) Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol 6:016008

    Article  Google Scholar 

  • Sekimura T, Zhu M, Cook J, Maini PK, Murray JD (1999) Pattern formation of scale cells in lepidoptera by differential origin-dependent cell adhesion. Bull Math Biol 61:807–828

    Article  Google Scholar 

  • Sherer NM, Mothes W (2008) Cytonemes and tunneling nanotubules in cell–cell communication and viral pathogenesis. Trends Cell Biol 18:414–420

    Article  Google Scholar 

  • Sherratt JA (2014) Periodic travelling waves in integrodifferential equations for nonlocal dispersal. SIAM J Appl Dyn Syst 13:1517–1541

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Gourley SA, Armstrong NJ, Painter KJ (2009) Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. Eur J Appl Math 20:123–144

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Murray JD (1990) Models of epidermal wound healing. Proc R Soc Lond B 241:29–36

    Article  Google Scholar 

  • Shinbrot T, Chun Y, Caicedo-Carvajal C, Foty R (2009) Cellular morphogenesis in silico. Biophys J 97:958–967

    Article  Google Scholar 

  • Simberloff D, Martin J-L, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  Google Scholar 

  • Simpson MJ, Landman KA, Hughes BD (2009) Multi-species simple exclusion processes. Phys A 388:399–406

    Article  Google Scholar 

  • Singh AP, Schach U, Nüsslein-Volhard C (2014) Proliferation, dispersal and patterned aggregation of iridophores in the skin prefigure striped colouration of zebrafish. Nat Cell Biol 16:604–611

    Article  Google Scholar 

  • Steinberg MS (2007) Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev 17:281–286

    Article  Google Scholar 

  • Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366:34–54

    Article  Google Scholar 

  • Thomas RJ, Bennett A, Thomson B, Shakesheff KM (2006) Hepatic stellate cells on poly (DL-lactic acid) surfaces control the formation of 3D hepatocyte co-culture aggregates in vitro. Eur Cells Mater 11:16–26

    Google Scholar 

  • Topaz CM, Bertozzi AL (2004) Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J Appl Math 65:152–174

    Article  MathSciNet  MATH  Google Scholar 

  • Topaz CM, Bertozzi AL, Lewis MA (2006) A nonlocal continuum model for biological aggregation. Bull Math Biol 68:1601–1623

    Article  MathSciNet  Google Scholar 

  • Tucker RP, Erickson CA (1986) The control of pigment cell pattern formation in the california newt, taricha torosa. J Embryol Exp Morphol 97:141–168

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  • Woolley TE, Maini PK, Gaffney EA (2014) Is pigment cell pattern formation in zebrafish a game of cops and robbers? Pigment Cell Melanoma Res 27:686–687

    Article  Google Scholar 

  • Yamanaka H, Kondo S (2014) In vitro analysis suggests that difference in cell movement during direct interaction can generate various pigment patterns in vivo. Proc Natl Acad Sci USA 111:1867–1872

    Article  Google Scholar 

  • Zihni C, Balda MS, Matter K (2014) Signalling at tight junctions during epithelial differentiation and microbial pathogenesis. J Cell Sci 127:3401–3413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Painter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Painter, K.J., Bloomfield, J.M., Sherratt, J.A. et al. A Nonlocal Model for Contact Attraction and Repulsion in Heterogeneous Cell Populations. Bull Math Biol 77, 1132–1165 (2015). https://doi.org/10.1007/s11538-015-0080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0080-x

Keywords

Navigation