Skip to main content
Log in

A Biophysical Model of Adaptive Noise Filtering in the Shark Brain

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Sharks detect their prey using an extremely sensitive electrosensory system that is capable of distinguishing weak external stimuli from a relatively strong background noise generated by the animal itself. Experiments indicate that part of the shark’s hindbrain, the dorsal octavolateralis nucleus (DON), is responsible for extracting the external stimulus using an adaptive filter mechanism to suppress signals correlated with the shark’s breathing motion. The DON’s principal neuron integrates input from afferents as well as many thousands of parallel fibres transmitting, inter alia, breathing-correlated motor command signals. There are a number of models in the literature, studying how this adaptive filtering mechanisms occurs, but most of them are based on a spike-train model approach.

This paper presents a biophysically based computational simulation which demonstrates a mechanism for adaptive noise filtering in the DON. A spatial model of the neuron uses the Hodgkin–Huxley equations to simulate the propagation of action potentials along the dendrites. Synaptic inputs are modelled by applied currents at various positions along the dendrites, whose input conductances are varied according to a simple learning rule.

Simulation results show that the model is able to demonstrate adaptive filtering in agreement with previous experimental and modelling studies. Furthermore, the spatial nature of the model does not greatly affect its learning properties, and in its present form is effectively equivalent to an isopotential model which does not incorporate a spatial element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bell, C. C., Caputi, A., Grant, K., & Serrier, J. (1993). Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish. Proc. Natl. Acad. Sci. USA, 90(10), 4650–4654.

    Article  Google Scholar 

  • Bell, C. C., Han, V., & Sawtell, N. B. (2008). Cerebellum-like structures and their implications for cerebellar function. Annu. Rev. Neurosci., 31, 1–24.

    Article  Google Scholar 

  • Bodznick, D. (1993). The specificity of an adaptive filter that suppresses unwanted reafference in electrosensory neurons of the skate medulla. Biol. Bull., 185(2), 312–314.

    Google Scholar 

  • Bodznick, D., Montgomery, J. C., & Bradley, D. J. (1992). Suppression of common mode signals within the electrosensory system of the little skate (Raja erinacea). J. Exp. Biol., 171(1), 107–125.

    Google Scholar 

  • Bodznick, D., Montgomery, J. C., & Carey, M. (1999). Adaptive mechanisms in the elasmobranch hindbrain. J. Exp. Biol., 202(10), 1357–1364.

    Google Scholar 

  • Fujita, M. (1982). Adaptive filter model of the cerebellum. Biol. Cybern., 45(3), 195–206.

    Article  MATH  Google Scholar 

  • Keener, J., & Sneyd, J. (1998). Mathematical physiology, I: cellular physiology (Vol. 1). Berlin: Springer.

    MATH  Google Scholar 

  • Linden, D. J. (1999). The return of the spike: review postsynaptic action potentials and the induction of ltp and ltd. Neuron, 22, 661–666.

    Article  Google Scholar 

  • Migliore, M., & Shepherd, G. M. (2002). Emerging rules for the distributions of active dendritic conductances. Nat. Rev. Neurosci., 3(5), 362–370.

    Article  Google Scholar 

  • Montgomery, J. C. (1984). Noise cancellation in the electrosensory system of the thornback ray; common mode rejection of input produced by the animal’s own ventilatory movement. J. Comp. Physiol., A Sens. Neural Behav. Physiol., 155(1), 103–111.

    Article  Google Scholar 

  • Montgomery, J. C., & Bodznick, D. (1994). An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci. Lett., 174(2), 145–148.

    Article  Google Scholar 

  • Montgomery, J. C., & Bodznick, D. (1999). Signals and noise in the elasmobranch electrosensory system. J. Exp. Biol., 202(10), 1349–1355.

    Google Scholar 

  • Napper, R. M. A., & Harvey, R. J. (1988). Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol., 274(2), 168–177.

    Article  Google Scholar 

  • Nelson, M. E. (2011). Electrophysiological models of neural processing. Wiley Interdiscip. Rev., Syst. Biol. Med., 3(1), 74–92.

    Article  Google Scholar 

  • Nelson, M. E., & Paulin, M. G. (1995). Neural simulations of adaptive reafference suppression in the elasmobranch electrosensory system. J. Comp. Physiol., A Sens. Neural Behav. Physiol., 177(6), 723–736.

    Article  Google Scholar 

  • Paulin, M. G. (2005). Evolution of the cerebellum as a neuronal machine for Bayesian state estimation. J. Neural Eng., 2(3), S219.

    Article  Google Scholar 

  • Porrill, J., Dean, P., & Anderson, S. R. (2012). Adaptive filters and internal models: multilevel description of cerebellar function. Neural Netw. doi:10.1016/j.neunet.2012.12.005. ISSN 0893-6080. http://www.sciencedirect.com/science/article/pii/S0893608012003206.

    Google Scholar 

  • Roberts, P. D., & Bell, C. C. (2000). Computational consequences of temporally asymmetric learning rules, II. Sensory image cancellation. J. Comput. Neurosci., 9(1), 67–83.

    Article  MATH  Google Scholar 

  • Sejnowski, T. J. (1977). Storing covariance with nonlinearly interacting neurons. J. Math. Biol., 4(4), 303–321.

    Article  MathSciNet  Google Scholar 

  • von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften, 37, 464–476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bratby.

Appendix:  Hodkgin–Huxley Equations

Appendix:  Hodkgin–Huxley Equations

$$\begin{aligned} C_\mathrm{m}\frac{dV}{dt}&=-\bar{g}_\mathrm{K}n^4(V-V_\mathrm{K})- \bar{g}_\mathrm{Na}m^3h(V-V_\mathrm{Na})- \bar{g}_\mathrm{L}(V-V_\mathrm{L}) + I_\mathrm{app}(t), \end{aligned}$$
(22)
$$\begin{aligned} \frac{dm}{dt}&=\alpha_m(1-m)-\beta_mm, \end{aligned}$$
(23)
$$\begin{aligned} \frac{dn}{dt}&=\alpha_n(1-n)-\beta_nn, \end{aligned}$$
(24)
$$\begin{aligned} \frac{dh}{dt}&=\alpha_h(1-h)-\beta_hh, \end{aligned}$$
(25)
$$\begin{aligned} \alpha_m&=0.1\frac{V+40}{1-\exp{ (\frac{-(V+40)}{10} )}}, \end{aligned}$$
(26)
$$\begin{aligned} \beta_m&=4\exp{ \biggl(\frac{-(V+65)}{18} \biggr)}, \end{aligned}$$
(27)
$$\begin{aligned} \alpha_h&=0.07\exp{ \biggl(\frac{-(V+65)}{20} \biggr)}, \end{aligned}$$
(28)
$$\begin{aligned} \beta_h&=\frac{1}{1+\exp{ (\frac{-(V+35)}{10} )}}, \end{aligned}$$
(29)
$$\begin{aligned} \alpha_n&=0.01\frac{V+55}{1-\exp{ (\frac{-(V+55)}{10} )}}, \end{aligned}$$
(30)
$$\begin{aligned} \beta_n&=0.125\exp{ \biggl(\frac{-(V+65)}{80} \biggr)}. \end{aligned}$$
(31)
Table 2 Parameters for the Hodgkin–Huxley equations (Paulin 2005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratby, P., Montgomery, J. & Sneyd, J. A Biophysical Model of Adaptive Noise Filtering in the Shark Brain. Bull Math Biol 76, 455–475 (2014). https://doi.org/10.1007/s11538-013-9928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9928-0

Keywords

Navigation