Skip to main content
Log in

Storing covariance with nonlinearly interacting neurons

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

A time-dependent, nonlinear model of neuronal interaction which was probabilistically analyzed in a previous article is shown here to be a natural generalization of the Hartline-Ratliff model of the Limulus retina. Although the primary physical variables in the model are the membrane potentials of neurons, the equations which govern the means and covariances of the membrane potentials are coupled through the average firing rates; as a consequence, the average firing rates control the selective storage and retrieval of covariance information. Motor learning in the cerebellar cortex is treated as a problem of covariance storage, and a prediction is made for the underlying synaptic plasticity: the change in synaptic strength between a parallel fiber and a Purkinje cell should be proportional to the covariance between discharges in the parallel fiber and the climbing fiber. Unlike previous proposals for synaptic plasticity, this prediction requires both facilitation and depression to occur (under different conditions) at the same synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amassian, V. H., Giblin, D.: Periodic components in steady-state activity of cuneate neurones and their possible role in sensory coding. J. Physiol. 243, 353–385 (1974).

    Google Scholar 

  • Bell, C., Kawasaki, T.: Relation among climbing fiber responses of nearby Purkinje cells. J. Neurophysiol. 35, 155–169 (1972).

    Google Scholar 

  • Dickson, J. W., Gerstein, G. L.: Interactions between neurons in auditory cortex of the cat. J. Neurophysiol. 37, 1239–1261 (1974).

    Google Scholar 

  • Eccles, J. C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine. Berlin-Heidelberg New York: Springer 1967.

    Google Scholar 

  • Grossberg, S.: Control enhancement, short-term memory, and constancies in reverberating neural networks. Studies in App. Math. 52, 213–257 (1973).

    Google Scholar 

  • Hartline, H. K., Ratliff, F.: Inhibitory interaction of the receptor units in the eye of Limulus. J. Gen. Physiol. 40, 1357–1376 (1957).

    Google Scholar 

  • Hebb, D. O.: The organization of behavior. New York: Wiley 1949.

    Google Scholar 

  • Ito, M.: Learning control mechanisms by the cerebellum flocculo-vestibulo-ocular system. In: The nervous system, Vol. 1 (Tower, D. H., ed.). New York: Raven Press 1975.

    Google Scholar 

  • Jeffress, L. A.: Localization of sound. In: Handbook of sensory physiology V/2: Auditory system (Keidel, W. D., Neff, W. D., eds.). Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Julesz, B.: Foundations of cyclopean perception. Chicago: University of Chicago Press 1971.

    Google Scholar 

  • Kalil, R. E., Chase, R.: Corticofugal influence on activity of lateral geniculate neurons in the cat. J. Neurophysiol. 33, 459–474 (1970).

    Google Scholar 

  • Kalman, R. E., Bucy, R. S.: New results in linear filtering and prediction theory. J. Basic Engineering 83D, 95–108 (1961).

    Google Scholar 

  • Kalman, R. E., Falb, P. L., Arbib, M. A.: Topics in mathematical system theory. New York: McGraw-Hill 1969.

    Google Scholar 

  • Marr, D.: A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969).

    Google Scholar 

  • Mountcastle, V. B.: The problem of sensing and neural coding. In: The neurosciences: a study program (Quarton, G. C., Melnechuk, T., Schmitt, F. O., eds.). New York: The Rockefeller University Press 1967.

    Google Scholar 

  • Palay, S. L., Chan-Palay, W.: Cerebellar cortex: cytology and organization. Berlin-Heidelberg New York: Springer 1974.

    Google Scholar 

  • Pfaffelhuber, E.: Correlation memory models — a first approximation in a general learning scheme. Biol. Cybernetics 18, 217–223 (1975).

    Google Scholar 

  • Plomp, R.: Auditory psychophysics. Ann. Rev. Psychol. 26, 207–232 (1975).

    Google Scholar 

  • Rakic, P.: Local circuit neurons. Neuroscience Res. Prog. Bull. 13, 289–446 (1975).

    Google Scholar 

  • Ramón y Cajal, S.: Histologie du système nerveux de l'homme et des vertébrés, Tom. II. Paris: Maloine 1955. Madrid: Consejo Superior de Investigaciones Cientificas 1911.

    Google Scholar 

  • Ratliff, F.: Studies in excitation and inhibition in the retina. New York: The Rockefeller University Press 1974.

    Google Scholar 

  • Robinson, D. A.: Adaptive gain control of vestibulo-ocular reflex by the cerebellum. J. Neuro physiol. 39, 954–969 (1976).

    Google Scholar 

  • Rodiek, R. W.: Maintained activity of cat retinal ganglion cells. J. Neurophysiol. 30, 1043–1071 (1967).

    Google Scholar 

  • Ross, J.: Stereopsis by binocular delay. Nature 248, 363–364 (1974).

    Google Scholar 

  • Sejnowski, T. J.: On global properties of neuronal interaction. Biol. Cybernetics 22, 85–95 (1976).

    Google Scholar 

  • Sejnowski, T. J.: On the stochastic dynamics of neuronal interaction. Biol. Cybernetics 22, 203–211 (1976).

    Google Scholar 

  • Sejnowski, T. J.: Statistical constraints on synaptic plasticity. J. Theor. Bio., in press (1977).

  • Snyder, D. L.: Random point processes. New York: Wiley 1975.

    Google Scholar 

  • Stent, G. S.: A physiological mechanism for Hebb's postulate of learning. Proc. Nat. Acad. Sci. U.S.A. 70, 997–1001 (1973).

    Google Scholar 

  • Stevens, C. F.: Neurophysiology: A primer. New York: J. Wiley 1966.

    Google Scholar 

  • Stevens, J. K., Gerstein, G. L.: Interactions between cat lateral geniculate neurons. J. Neurophysiol. 39, 239–256 (1976).

    Google Scholar 

  • Szentágothai, J.: Architecture of the cerebral cortex. In: Basic mechanisms of the epilepsies (Jasper, H. H., Ward, A. A., Pope, A., eds.). Boston: Little, Brown 1969.

    Google Scholar 

  • Tsypkin, Ya. Z.: Foundations of the theory of learning systems. New York: Academic Press 1973.

    Google Scholar 

  • Werblin, F. S., Dowling, J. E.: Organization of the retina of the mudpuppy, Necturus maculosus: II. Intracellular recording. J. Neurophysiol. 32, 339–355 (1969).

    Google Scholar 

  • Wilson, H. R., Cowan, J. D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sejnowski, T.J. Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4, 303–321 (1977). https://doi.org/10.1007/BF00275079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275079

Keywords

Navigation