Skip to main content
Log in

Travelling Waves in Hyperbolic Chemotaxis Equations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical models of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular (signal) chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s (Keller and Segel, J. Theor. Biol. 30:235–248, 1971). The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities which are biologically unrealistic. In this paper, we formulate a model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We prove the global existence of solutions and then show the existence of travelling wave solutions both numerically and analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables (9th ed.). Washington: United States Government Printing Office.

    MATH  Google Scholar 

  • Adler, J. (1966a). Chemotaxis in bacteria. Science, 153, 708–716.

    Article  Google Scholar 

  • Adler, J. (1966b). Effect of amino acids and oxygen on chemotaxis in Escherichia coli. J. Bacteriol., 92, 121–129.

    Google Scholar 

  • Adler, J. (1975). Chemotaxis in bacteria. Ann. Rev. Biochem., 44, 341–356.

    Article  Google Scholar 

  • Barkai, N., & Leibler, S. (1997). Robustness in simple biochemical networks. Nature, 387, 913–917.

    Article  Google Scholar 

  • Berestycki, H., Nadin, G., Perthame, B., & Ryzhik, L. (2009). The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity, 22(12), 2813–2844.

    Article  MATH  MathSciNet  Google Scholar 

  • Bournaveas, N., Buguin, A., Calvez, V., Perthame, B., Saragosti, J., & Silberzan, P. (2010, under revision). Mathematical description of bacterial traveling pulses. doi:10.1371/journal.pcbi.1000890.

  • Bournaveas, N., & Calvez, V. (2008). Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables. Kinet. Relat. Models, 1(1), 29–48.

    MATH  MathSciNet  Google Scholar 

  • Brenner, M., Levitov, L., & Budrene, E. (1998). Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J., 74(4), 1677–1693.

    Article  Google Scholar 

  • Budrene, E. O., & Berg, H. C. (1991). Complex patterns formed by motile cells of Escherichia coli. Nature, 349(6310), 630–633.

    Article  Google Scholar 

  • Budrene, E. O., & Berg, H. C. (1995). Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature, 376(6535), 49–53.

    Article  Google Scholar 

  • Dahlquist, F., Lovely, P., & Koshland, D. (1972). Quantitative analysis of bacterial migration in chemotaxis. Nat. New Biol., 236, 120–123.

    Article  Google Scholar 

  • Erban, R. (2005). From individual to collective behaviour in biological systems. Ph.D. thesis, University of Minnesota.

  • Erban, R., & Hwang, H. (2006). Global existence results for the complex hyperbolic models of bacterial chemotaxis. Discrete Contin. Dyn. Syst. Ser. B, 6(6), 1239–1260.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., & Othmer, H. (2004). From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math., 65(2), 361–391.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., & Othmer, H. (2005). From signal transduction to spatial pattern formation in E. coli: A paradigm for multi-scale modeling in biology. Multiscale Model. Simul., 3(2), 362–394.

    Article  MATH  MathSciNet  Google Scholar 

  • Erban, R., & Othmer, H. G. (2007). Taxis equations for amoeboid cells. J. Math. Biol., 54, 847–885.

    Article  MATH  MathSciNet  Google Scholar 

  • Gerisch, A., & Painter, K. J. (2010). Mathematical modelling of cell adhesion and its applications to developmental biology and cancer invasion. In A. Chauviere & L. Preziosi (Eds.), Cell and tissue mechanics (pp. 319–350). Berlin: Springer. Chap. 12.

    Google Scholar 

  • Horstmann, D. (2003). From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I. Jahresber. DMV, 105(3), 103–165.

    MATH  MathSciNet  Google Scholar 

  • Horstmann, D., & Stevens, A. (2004). A constructive approach to traveling waves in chemotaxis. J. Nonlinear Sci., 14, 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang, H., Kang, K., & Stevens, A. (2005a). Drift-diffusion limits of kinetic models for chemotaxis: a generalization. Discrete Contin. Dyn. Syst. B, 5(2), 319–334.

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang, H., Kang, K., & Stevens, A. (2005b). Global solutions of nonlinear transport equations for chemosensitive movements. SIAM J. Math. Anal., 36(4), 1177–1199.

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang, H., Kang, K., & Stevens, A. (2006). Global existence of classical solutions for a hyperbolic chemotaxis model and its parabolic limit. Indiana Univ. Math. J., 55(1), 289–316.

    Article  MATH  MathSciNet  Google Scholar 

  • Keller, E. F., & Segel, L. A. (1971). Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol., 30, 235–248.

    Article  Google Scholar 

  • Landman, K., Petter, G., & Newgreen, D. (2003). Chemotactic cellular migration: smooth and discontinuous travelling wave solutions. SIAM J. Appl. Math., 63(5), 1666–1681.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, T., & Wang, Z. (2010, accepted). Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis. Math. Models Methods Appl. Sci. doi:10.1142/S0218202510004830.

  • Lui, R., & Wang, Z. A. (2010, in press). Traveling wave solutions from microscopic to macroscopic chemotaxis models. J. Math. Biol. doi:10.1007/s00285-009-0317-0.

  • Murray, J. (2002). Mathematical biology. Berlin: Springer.

    MATH  Google Scholar 

  • Painter, K. J. (2009). Modelling cell migration strategies in the extracellular matrix. J. Math. Biol., 58, 511–543.

    Article  MathSciNet  Google Scholar 

  • Simon, J., & Milewski, P. A. (2010, in press). The volcano effect in bacterial chemotaxis. Math. Comput. Model. doi:10.1016/j.mcm.2010.01.019.

  • Spiro, P., Parkinson, J., & Othmer, H. (1997). A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA, 94, 7263–7268.

    Article  Google Scholar 

  • Schmitt, B. A., Weiner, R., & Podhaisky, H. (1997). ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs. Appl. Numer. Math., 25, 303–319.

    Article  MATH  MathSciNet  Google Scholar 

  • Weis, R., & Koshland, D. (1988). Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid. PNAS, 85, 83–87.

    Article  Google Scholar 

  • Xue, C. (2008). Mathematical models of taxis-driven bacterial pattern formation. Ph.D. thesis, University of Minnesota.

  • Xue, C., & Othmer, H. G. (2009). Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math., 70(1), 133–167.

    Article  MATH  MathSciNet  Google Scholar 

  • Xue, C., Othmer, H. G., & Erban, R. (2009). From individual to collective behavior of unicellular organisms: Recent results and open problems. In AIP (Vol. 1167, pp. 3–14). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, C., Hwang, H.J., Painter, K.J. et al. Travelling Waves in Hyperbolic Chemotaxis Equations. Bull Math Biol 73, 1695–1733 (2011). https://doi.org/10.1007/s11538-010-9586-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9586-4

Keywords

Navigation