Skip to main content
Log in

Maximum Urine Concentrating Capability in a Mathematical Model of the Inner Medulla of the Rat Kidney

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In a mathematical model of the urine concentrating mechanism of the inner medulla of the rat kidney, a nonlinear optimization technique was used to estimate parameter sets that maximize the urine-to-plasma osmolality ratio (U/P) while maintaining the urine flow rate within a plausible physiologic range. The model, which used a central core formulation, represented loops of Henle turning at all levels of the inner medulla and a composite collecting duct (CD). The parameters varied were: water flow and urea concentration in tubular fluid entering the descending thin limbs and the composite CD at the outer-inner medullary boundary; scaling factors for the number of loops of Henle and CDs as a function of medullary depth; location and increase rate of the urea permeability profile along the CD; and a scaling factor for the maximum rate of NaCl transport from the CD. The optimization algorithm sought to maximize a quantity E that equaled U/P minus a penalty function for insufficient urine flow. Maxima of E were sought by changing parameter values in the direction in parameter space in which E increased. The algorithm attained a maximum E that increased urine osmolality and inner medullary concentrating capability by 37.5% and 80.2%, respectively, above base-case values; the corresponding urine flow rate and the concentrations of NaCl and urea were all within or near reported experimental ranges. Our results predict that urine osmolality is particularly sensitive to three parameters: the urea concentration in tubular fluid entering the CD at the outer-inner medullary boundary, the location and increase rate of the urea permeability profile along the CD, and the rate of decrease of the CD population (and thus of CD surface area) along the cortico-medullary axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armsen, T., Reinhardt, H., 1971. Pflügers Arch. 326, 270.

    Article  Google Scholar 

  • Atherton, J.C., Hai, M.A., Thomas, S., 1968. J. Physiol. 197(2), 429.

    Google Scholar 

  • Atherton, J.C., Hai, M.A., Thomas, S., 1969. Pflügers Arch. 310, 281.

    Article  Google Scholar 

  • Beuchat, C.A., 1996. Am. J. Physiol. (Regul. Integr. Comp. Physiol. 40) 279, R157.

    Google Scholar 

  • Breinbauer, M., 1988. Diploma thesis, Tech. Univ. of Munich.

  • Breinbauer, M., Lory, P., 1991. Appl. Math. Comput. 44, 195.

    Article  MATH  Google Scholar 

  • Chou, C.-L., Knepper, M., 1992. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 32) 263, F417.

    Google Scholar 

  • Fenton, R.A., Chou, C.-L., Sowersby, H., Smith, C.P., Knepper, M.A., 2006. Am. J. Physiol., Renal Physiol. 291, F148.

    Article  Google Scholar 

  • Friedman, M.H., 1986. Principles and Models of Biological Transport. Springer, Berlin.

    Google Scholar 

  • Gamble, J.L., McKhann, C.F., Butler, A.M., Tuthill, E., 1934. Am. J. Physiol. 109, 139.

    Google Scholar 

  • Greger, R., Velázquez, H., 1987. Kidney Int. 31, 590.

    Article  Google Scholar 

  • Hai, M.A., Thomas, S., 1969. Pflügers Arch. 310, 297.

    Article  Google Scholar 

  • Han, J.S., Thompson, K.A., Chou, C.L., Knepper, M.A., 1992. J. Am. Soc. Nephrol. 2, 1677.

    Google Scholar 

  • Hervy, S., Thomas, S., 2003. Am. J. Physiol., Renal Physiol. 284, F65.

    Google Scholar 

  • Imai, M., 1977. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 1) 232, F201.

    Google Scholar 

  • Jamison, R.L., Kriz, W., 1982. Urinary Concentrating Mechanism: Structure and Function. Oxford University Press, New York.

    Google Scholar 

  • Kato, A., Naruse, M., Knepper, M., Sands, J., 1998. J. Am. Soc. Nephrol. 9, 737.

    Google Scholar 

  • Kedem, O., Katchalsky, A., 1958. Biochim. Biophys. Acta 27, 229.

    Article  Google Scholar 

  • Kim, D., Klein, J.D., Racine, S., Murrell, B.P., Sands, J.M., 2005. Am. J. Physiol., Renal Physiol. 288, F188.

    Article  Google Scholar 

  • Kim, S., Tewarson, R.P., 1996. Appl. Math. Lett. 9(3), 77.

    Article  MathSciNet  Google Scholar 

  • Knepper, M., Saidel, G., Hascall, V., Dwyer, T., 2003. Am. J. Physiol., Renal Physiol. 284, F433.

    Google Scholar 

  • Kokko, J.P., Rector, F.C., 1972. Kidney Int. 2, 214.

    Article  Google Scholar 

  • Layton, A.T., Layton, H.E., 2002. Math. Biosci. 45, 549.

    MATH  MathSciNet  Google Scholar 

  • Layton, A.T., Layton, H.E., 2005a. Am. J. Physiol., Renal Physiol. 289, F1346.

    Article  Google Scholar 

  • Layton, A.T., Layton, H.E., 2005b. Am. J. Physiol., Renal Physiol. 289, F1367.

    Article  Google Scholar 

  • Layton, A.T., Pannabecker, T.L., Dantzler, W.H., Layton, H.E., 2004. Am. J. Physiol., Renal Physiol. 287, F816.

    Article  Google Scholar 

  • Layton, H.E., 1986. Biophys. J. 49, 1033.

    Article  Google Scholar 

  • Layton, H.E., 2002. In: Layton, H.E., Weinstein, A.M. (Eds.), Membrane Transport and Renal Physiology. The IMA Volumes in Mathematics and Its Applications, vol. 129, pp. 233–272. Springer, New York.

    Google Scholar 

  • Layton, H.E., Davies, J.M., Casotti, G., Braun, E.J., 2000. Am. J. Physiol., Renal Physiol. 279, F1139.

    Google Scholar 

  • Liu, W., Morimoto, T., Kondo, Y., Iinuma, K., Uchida, S., Imai, M., 2001. Kidney Int. 60, 680.

    Article  Google Scholar 

  • Marcano, M., Layton, A.T., Layton, H.E., 2006. Bull. Math. Biol. 68(7), 1625.

    Article  MathSciNet  Google Scholar 

  • Marcano-Velázquez, M., Layton, H.E., 2003. Bull. Math. Biol. 65(4), 665.

    Article  Google Scholar 

  • Murtagh, B.A., Saunders, M.A., 1978. Math. Prog. 14, 41.

    Article  MATH  MathSciNet  Google Scholar 

  • Murtagh, B.A., Saunders, M.A., 1998. MINOS 5.5 User’s Guide. Tech. Report Sol 83-20R, Stanford Univ., Stanford, CA, Department of Operation Research.

  • Pannabecker, T.L., Abbott, D.E., Dantzler, W.H., 2004. Am. J. Physiol., Renal Physiol. 286, F38.

    Article  Google Scholar 

  • Pannabecker, T.L., Dantzler, W.H., 2004. Am. J. Physiol., Renal Physiol. 287, F767.

    Article  Google Scholar 

  • Pannabecker, T.L., Dantzler, W.H., 2006. Am. J. Physiol., Renal Physiol. 290, F1355.

    Article  Google Scholar 

  • Pannabecker, T.L., Dantzler, W.H., 2007. Am. J. Physiol., Renal Physiol. 293, F696.

    Article  Google Scholar 

  • Pennell, J.P., Lacy, F.B., Jamison, R.L., 1974. Kidney Int. 5, 337.

    Article  Google Scholar 

  • Rouffignac, C., de Bonvalet, J.P., 1970. Pflügers Arch. 317, 141.

    Article  Google Scholar 

  • Sands, J., Knepper, M., 1987. J. Clin. Invest. 79, 138.

    Article  Google Scholar 

  • Sands, J., Nonoguchi, H., Knepper, M., 1987. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 22) 253, F823.

    Google Scholar 

  • Sands, J.M., 2002. In: Layton, H.E., Weinstein, A.M. (Eds.), Membrane Transport and Renal Physiology. The IMA Volumes in Mathematics and Its Applications, vol. 129, pp. 193–210. Springer, New York.

    Google Scholar 

  • Sands, J.M., Layton, H.E., 2007. In: Alpern, R.J., Hebert, S.C. (Eds.), The Kidney: Physiology and Pathophysiology, 4th edn., pp. 1143–1178. Elsevier, New York.

    Google Scholar 

  • Stephenson, J.L., 1972. Kidney Int. 2, 85.

    Article  Google Scholar 

  • Stephenson, J.L., 1992. In: Windhager, E. (Ed.), Handbook of Physiology, pp. 1349–1408. Oxford University Press, New York. Chap. 30.

    Google Scholar 

  • Tewarson, R.P., 1993a. Appl. Math. Lett. 6(5), 63.

    Article  Google Scholar 

  • Tewarson, R.P., 1993b. Appl. Math. Lett. 6(6), 71.

    Article  MATH  Google Scholar 

  • Tewarson, R.P., Marcano, M., 1997. Inverse Probl. Eng. 5, 1.

    Article  Google Scholar 

  • Tewarson, R.P., Toro, W., Marcano, M., 1998. Appl. Math. Lett. 11(3), 51.

    Article  Google Scholar 

  • Wang, H., Tewarson, R.P., 1993. Appl. Math. Lett. 6(2), 61.

    Article  Google Scholar 

  • Weast, R.C.E., 1974. Handbook of Chemistry and Physics, 55th edn. CRC, Cleveland.

    Google Scholar 

  • Weinstein, A.M., 1998. Am. J. Physiol., Renal Physiol. 274(5), F841.

    Google Scholar 

  • Weinstein, A.M., 2000. Am. J. Physiol., Renal Physiol. 279, F24.

    Google Scholar 

  • Weinstein, A.M., 2002. Am. J. Physiol., Renal Physiol. 283, F1237.

    Google Scholar 

  • Wesson, L.G., Anslow, W.P., 1952. Am. J. Physiol. 170, 255.

    Google Scholar 

  • Wexler, A.S., Kalaba, R.E., Marsh, D.H., 1991. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 29) 260, F384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Marcano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcano, M., Layton, A.T. & Layton, H.E. Maximum Urine Concentrating Capability in a Mathematical Model of the Inner Medulla of the Rat Kidney. Bull. Math. Biol. 72, 314–339 (2010). https://doi.org/10.1007/s11538-009-9448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9448-0

Keywords

Navigation